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What are Heegner points?

They are rational points defined on certain special elliptic curves

In this talk, they will be rational points of infinite order defined only on elliptic curves

• defined over Q and

• of Mordell-Weil rank 1.

We will say little about their significant theoretical importance (in almost proving the
BSD conjectures for curves of rank 1), but only discuss how they may be used to
compute explicit nontrivial rational points on rank one elliptic curves.
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Plan of the talk

• A first (easy) example

• Some theory, leading to

• a recipe

• Some tricks

• Implementations

• Bigger examples
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A first example

The curve 5160J1:

y2 = x3 − x2 + 399549679x + 2496643493445

has rank 1; its generator has canonical height (predicted by the BSD conjecture)
approximately 13.07.
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A first example

The curve 5160J1:

y2 = x3 − x2 + 399549679x + 2496643493445

has rank 1; its generator has canonical height (predicted by the BSD conjecture)
approximately 13.07.

The generator is

P =
(

770528077163
6195121

,
685476882728132850

15419656169

)
=

(
770528077163

24892
,
685476882728132850

24893

)
.
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A simple gp script

e=ellinit( [0,-1,0,399549679,2496643493445] );
w1=e.omega[1]
n=ellglobalred(e)[1];
print("N = ",n);
nan=40000;
an=ellan(e,nan);
b=6677; d=-71; h=7; h0=4; ai=[1,2,3,4,5,8,10]
tau=(-b+sqrt(d))/(2*n)
qi=vector(h0,k,exp(2*Pi*I*tau/ai[k]))
xi=vector(h0,k,1)
si=vector(h0,k,0)
for(j=1,nan,cn=an[j]/j; \
for(k=1,h0,xi[k]*=qi[k]; si[k]+=cn*xi[k]));
s=real(si[1]+2*(si[2]+si[3]+si[4]));
z=(2*s+3*w1)/32
p=ellztopoint(e,z)
xp=bestappr(real(p[1]),10^10)
yp=ellordinate(e,xp)[1]
p=[xp,yp]
if(ellisoncurve(e,p),print("P = ",p,"\nHeight = ",ellheight(e,p)))
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A little theory

• E/Q is modular;

• so there is a map ϕ : X0(N) → E where N = cond(E) and X0(N) is the modular
curve (defined over Q);

• so we might hope that carefully chosen points τ ∈ X0(N) might map to rational
points on E . . .

• Explicitly, ϕ is given by

ϕ(τ) = −
∞∑

n=1

an

n
qn ∈ C/Λ ∼= E(C)
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where (an)∞n=1 are the coefficients of both the L-series L(E, s) =
∑∞

n=1 ann−s and
of the modular form fE(τ) =

∑∞
n=1 anqn, where q = exp(2πiτ).
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• We can compute this accurately given enough coefficients an provided that y =
Im(τ) >> 0.



6

where (an)∞n=1 are the coefficients of both the L-series L(E, s) =
∑∞

n=1 ann−s and
of the modular form fE(τ) =

∑∞
n=1 anqn, where q = exp(2πiτ).

• We can compute this accurately given enough coefficients an provided that y =
Im(τ) >> 0.

• but why should ϕ(τ) be a rational point?
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A little more theory

• Points on X0(N) parametrize triples (E1, E2, α) where the Ej are elliptic curves
(defined over C) and α : E1 → E2 is an isogeny with kernel cyclic of order N ;
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A little more theory

• Points on X0(N) parametrize triples (E1, E2, α) where the Ej are elliptic curves
(defined over C) and α : E1 → E2 is an isogeny with kernel cyclic of order N ;

• One recipe to construct such triples is to let K be an imaginary quadratic field, and
n an ideal such that ZK/n ∼= Z/NZ and E1 = C/an, E2 = C/a, with α the natural
map.

• A sufficient condition for this to be possible is for all prime divisors of N split in K,
which we will assume.

• The triple (C/an, C/a, α) ∈ X0(N)(H) where H is the Hilbert class field of K. The
Galois action is given explicitly by class field theory (giving a very explicit c.f.t. over
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imaginary quadratic fields). We get a complete set of Galois conjugates by letting a
run through representatives of the ideal classes.
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imaginary quadratic fields). We get a complete set of Galois conjugates by letting a
run through representatives of the ideal classes.

• Hence the image of these points under the modular parametrization ϕ are a complete
set of Galois conjugate points in E(H); adding (using the group law) gives a point in
E(K).

• Provided that E has rank 1 over Q and also over K, we can take a further trace
down to Q to get a rational point in E(Q).

• the height of this point is given by a formula of Gross and Zagier.
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A simpler recipe

To turn the above into a recipe which me may implement simply, we use binary
quadratic forms to represent the ideal classes.

[a, b, c] will denote the b.q.f. aX2 + bXY + cY 2; we require b2 − 4ac = −D < 0 and
N | a, so b is a (fixed) root of b2 ≡ −D (mod 4N). We then hope to have h forms of
the form [aiN, b, ci] representing all the h ideal classes and take
τi = (−b +

√
−D)/2aiN .
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A simpler recipe

To turn the above into a recipe which me may implement simply, we use binary
quadratic forms to represent the ideal classes.

[a, b, c] will denote the b.q.f. aX2 + bXY + cY 2; we require b2 − 4ac = −D < 0 and
N | a, so b is a (fixed) root of b2 ≡ −D (mod 4N). We then hope to have h forms of
the form [aiN, b, ci] representing all the h ideal classes and take
τi = (−b +

√
−D)/2aiN .

1. Choose a [fundamental] discriminant −D < 0 such that
(
−D
p

)
= +1 for all p | N ;

2. Choose a root b of b2 ≡ −D (mod 4N);
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3. Set c = (b2 + D)/4N ; check whether the forms Qi = [aiN, b, ci] cover the classes as
ci runs over the divisors of c and ai = c/ci. If not, choose another b.

4. Use the values τi = (−b +
√
−D)/2aiN .
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√

D/(2aiN), so we try to maximize the minimum
√

D/ai. (We cannot
change N !)
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• Our implementation uses a recursive scheme to evaluate the sums
∑n0

n=1 anqn without
having to store a lot of the coefficients an; original idea due to Buhler-Gross-Zagier,
but with improvements by Cremona-Womack!
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Recognising the points

• Each ϕ(τi) ∈ C/Λ, so adding up the conjugates is easy! Then we apply the Weierstrass
parametrization map C/Λ → E(C) (using GP’s ellztopoint()) to obtain (x, y)
coordinates on E, as floating point approximations, which are by construction real
and also, in theory, rational.
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Recognising the points

• Each ϕ(τi) ∈ C/Λ, so adding up the conjugates is easy! Then we apply the Weierstrass
parametrization map C/Λ → E(C) (using GP’s ellztopoint()) to obtain (x, y)
coordinates on E, as floating point approximations, which are by construction real
and also, in theory, rational.

• In simple cases we can use continued fractions (GP’s bestapprox() ) to recover
x ∈ Q and hence y, as in the first example, so we find (x, y) ∈ E(Q).

• We glossed over one important point: the rational point P constructed is not in
general a generator of E(Q) but a multiple of the generator: P = kP0. Luckily, the
Gross-Zagier formula gives us an analytic formula (assuming BSD) for this index k.
So we divide P by k (on C/Λ, before applying ellztopoint()) giving k or 2k real
possibilities to check. (Torsion needs to be handled carefully too here.)
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The Cremona-Silverman trick

• We are seeking to recognise a rational point P0 = (x0, y0) ∈ E(Q) from a floating
point approximation to its x-coordinate x0. We also know the canonical height ĥ(P0)
from the BSD formula.
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• Since we can compute ĥ(P0) using BSD and h∞(x0) from our approximate value
of x0, we can (up to a finite number of possibilities) compute the denominator
denom x0 (making use of the fact that it is a perfect square to obtain double precision
for free!).
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• Since we can compute ĥ(P0) using BSD and h∞(x0) from our approximate value
of x0, we can (up to a finite number of possibilities) compute the denominator
denom x0 (making use of the fact that it is a perfect square to obtain double precision
for free!).

• this works well in practice, though care is needed: for example, even when we have
successfully found d = denom(x0) it is not necessarily the case that num(x0) is the
closest integer to dx̃0 for our approximation x̃0 to x0.
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Implementations

The following implementations exist, that I know of. Of course, many people have
computed many individual examples; here I include (semi-)automatic packages only.

• My own (a set of GP scripts); Tom Womack also contributed some ideas here; good
for curves of conductor up to a million at least;

• Christophe Delaunay’s GP scripts;

• Mark Watkins’s Magma implementation, originating from Womack’s translation of
our GP into Magma but now vastly improved (part of Magma distribution since
version 2.11);

• Peter Green’s GP scripts; not optimized for finding large points.


