
.

Development and structure of the PARI library

� ��� � � �� �� �	


 � � ��
 � � ��� �� �� � � 
 � ��� �� � �� � �� �� � �

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; . # . .



Warning

This talk focuses on the current development version of the PARI library
(2-2-8, to be released), freely available from anonymous CVS (Concurrent
Version System), see

� � � � � � � ��� �� 	
 � � � 	 �
� �� � �� � �� 	� � �� �� 	 � � 
 �

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; 6 # . .



Development goals
� Uniformize, clean up, improve with respect to speed, memory use, and

reliability.

� User-driven and application-driven development. Priority : clearing
significant bottlenecks for applications to algebraic number theory
(factoring polynomials over finite fields, linear algebra in large dimensions,
subresultants and gcds).

� Devise algorithms and experiment with them, usually after quick
prototyping in GP.

� Document what is there, including algorithms used and references.

� Having fun !
� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; 0 # . .



An example : � �� �� �� � �

� ECM (1.x.x, Bernardi)

� MPQS (2.0.9, Papanikolaou, Roblot, based on LiDIA code)

� Pollard-Brent � , general factorization driver (2.0.10, Niklasch)

� ECM-rewrite (2.0.12) (Niklasch)

� SQUFOF (2.0.21, Niklasch)

� countless MPQS/ECM/ � -tunings (Niklasch)

To be done : double large prime variation in MPQS, Montgomery arithmetic in
ECM, � , primality tests. . .

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; 7 # . .



Components

Apart from high-level modules (number fields, elliptic curves, primality and
factorization) and specialized ones (gp-specific, graphisms), the PARI library
has five basic components

� Input/Output and memory management.

� Kernel : the 4 basic operations � ,� , � , � (the last one having many
variants)

� Polynomial arithmetic

� Linear algebra

� Transcendental functions
� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; � # . .



Memory management (1/2)

Results are allocated sequentially on a huge (e.g. 10MB) connected chunk of
preallocated memory, the PARI � �� �� . It is the user’s responsibility to

� ensure allocated stack is large enough (otherwise � � � �� �� � �� ��

� � � � � �� 	 � 
 ).

� collect garbage, once in a while or systematically.

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; � # . .



Memory management (2/2)
� save/restore :

��� �� �� � � �	 � 
 � �� � 
 ��� � � �� � �� �� � 	 � � �� � � �

� � �

� �� � 
 � �	 � 
 ��� �� � �	 �� � � � � �� � � � � �� � � �� �� � �� �� � �

� save/copy/restore/copy :

��� �� �� � � �	 � 
 � �� � 
 ��� � � �� � �� �� � 	 � � �� � � �

� �� � � � � � � � 
 � � � � � � � 	 � � 	 � �� � � � �	 � � � �� � � � �� � � �

� � �
 � �� � � �� � � � ! � �	 � � " � #� � # � � # � � # � $ 
 � � � �� � � � � � �

� save/copy/restore : when data and garbage both connected. Saves one
copy but not always applicable. And more prone to user error.

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; 3 # . .



Kernel

Implements mostly the 4 operations : � ,� , � , �

� Level 0 : operations on longs, e.g.� � � � � (add two unsigned longs and
possibly set a carry bit). Mostly assembly and inlined routines.

� Level 1 : operations on � �� � � s, e.g.� � �� � , � � �� � � s, e.g.� � � � � , and
combinations of these, e.g.
 ��� � � . Currently two versions : native and
GMP (
 ��� level).

� Level 2 : operations on polynomials and vector/matrices with coefficients
in a specified ring, e.g. � �� �� � � , � ��� �� � � , �� �� � � , � ��	 � 
 � � , � ��	 � � � � � 
 � � ,
etc.

� Level 3 : generic operations, e.g. 
� � � , 
 
 � � .
� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; � # . .



New Level 2 Kernel

Function names are built by concatenating the “types” of the arguments, then
an operation. A “type” name is a base ring followed by a letter indicating the
structure : e.g.� for univariate polynomials, � for vectors,	 for matrices, � for
classes in a polynomial quotient ring. Base rings are

� � : � ��� � where� is a small integer, not necessarily prime. Implemented using
ulongs

� � : � �� � where� is a � �� � � , not necessarily prime. Implemented as � �� � � s

� , � � � 	 � .

� 
 : � �
� � �� � ��� � � � � ,� a � �� � � ,� a � � � � � with � � coefficients or NULL.
Implemented as � � � � � s � with � � coefficients, �� � � � � 	 �� �� .

� : the integers � , implemented as � �� � � s.

� : the integers � , implemented using longs

� : the rational numbers � , implemented as � �� � � s and � � � � � � s.

� 
 : a commutative ring, whose elements can be 
� � � -ed, 
 
 � � -ed, etc.

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; 5 # . .



Applications

Many specialized routines are built on top of these basic ones, e.g. � �	 � � � � ,

� ��� � � ��� � � � � � � � �� � � . And then of course, all high-level routines eventually
call such functions.

While programming with the PARI library, everything may be emulated by
generic routines and higher-level types such as � � � � �	 �� s, � �� � �	 �� s. At a
significant cost, in time and space.

To be done : implement asymptotically fast(er) algorithms, where that would
make a difference to intended applications. Tighter interfaces with GMP.

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; . 4 # . .



Plans
� Release a new stable version (2.1 was released in 2000)

� Replace the GP parser by GP2C (Problem : cannot maintain backward
compatibility)

� Tighter integration with GMP (real arithmetic), fix transcendental functions
(too slow).

� Screen crucial individual routines and algorithms to detect problems and
inefficiencies.

� Document all PARI routines, add examples to all GP functions, write
specialized test suites.

� Add selected useful algorithms. Either as new C code modules, or as GP
scripts.

� !" #%$ � &' () *+ ' , -/. 021 . 3 #%45 #/6 4 47 8:9 ,<; . . # . .


