Development and structure of the PARI library

Karim Belabas
http://pari.math.u-bordeaux.fr/

UNIVERSITE

PARIS- SUD 11 PARI/GP Workshop (13-17/09/2004) — p. 1/11

Warning

This talk focuses on the current development version of the PARI library
(2-2-8, to be released), freely available from anonymous CVS (Concurrent
Version System), see

http://pari.math.u-bordeaux.fr/CVS.html

PARI/GP Workshop (13-17/09/2004) — p. 2/11

Development goals

Uniformize, clean up, improve with respect to speed, memory use, and
reliability.

User-driven and application-driven development. Priority : clearing
significant bottlenecks for applications to algebraic number theory
(factoring polynomials over finite fields, linear algebra in large dimensions,
subresultants and gcds).

Devise algorithms and experiment with them, usually after quick
prototyping in GP.

Document what is there, including algorithms used and references.

Having fun'!

PARI/GP Workshop (13-17/09/2004) — p. 3/11

An example: factorint

ECM (1.x.x, Bernardi)

MPQS (2.0.9, Papanikolaou, Roblot, based on LIDIA code)
Pollard-Brent p, general factorization driver (2.0.10, Niklasch)
ECM-rewrite (2.0.12) (Niklasch)

SQUFOF (2.0.21, Niklasch)

countless MPQS/ECM/p-tunings (Niklasch)

To be done : double large prime variation in MPQS, Montgomery arithmetic in
ECM, p, primality tests. ..

PARI/GP Workshop (13-17/09/2004) — p. 4/11

Components

Apart from high-level modules (number fields, elliptic curves, primality and
factorization) and specialized ones (gp-specific, graphisms), the PARI library
has five basic components

e Input/Output and memory management.

e Kernel : the 4 basic operations +, -, *, / (the last one having many
variants)

e Polynomial arithmetic
e Linear algebra

e Transcendental functions

PARI/GP Workshop (13-17/09/2004) — p. 5/11

Memory management (1/2)

Results are allocated sequentially on a huge (e.g. 10MB) connected chunk of
preallocated memory, the PARI stack. It is the user’s responsibility to

e ensure allocated stack is large enough (otherwise The PARI stack
overflows !).

e collect garbage, once in a while or systematically.

PARI/GP Workshop (13-17/09/2004) — p. 6/11

Memory management (2/2)

e save/restore :
pari_sp ltop = avma; /* save stack pointer */
avma = ltop; /* restore it. Erase accumulated data */

e save/copy/restore/copy
pari_sp ltop = avma; /* save stack pointer */
GEN a, b, ¢, d; /* will hold objects to be preserved */
gerepileall(1ltop, 4, &a,&b,&c,&d) ; /* clean up */

e save/copy/restore : when data and garbage both connected. Saves one
copy but not always applicable. And more prone to user error.

PARI/GP Workshop (13-17/09/2004) — p. 7/11

Kernel

Implements mostly the 4 operations : +, -, *, /

e Level O : operations on longs, e.g. add11 (add two unsigned longs and
possibly set a carry bit). Mostly assembly and inlined routines.

e Level 1 : operations on t_INTS, e.g. addii, t_REALS, e.g. addrr, and
combinations of these, e.g. mpadd. Currently two versions : native and
GMP (mpn level).

e Level 2 : operations on polynomials and vector/matrices with coefficients
In a specified ring, e.9.F1x_add, FpX_add, ZX_add, FpM_mul, FpM_FpV_mul,
etc.

e Level 3 : generic operations, e.g. gadd, gmul.

PARI/GP Workshop (13-17/09/2004) — p. 8/11

New Level 2 Kernel

Function names are built by concatenating the “types” of the arguments, then
an operation. A “type” name is a base ring followed by a letter indicating the
structure : e.g. X for univariate polynomials, V for vectors, M for matrices, Q for
classes in a polynomial quotient ring. Base rings are

F1:Z/IZ where [is a small integer, not necessarily prime. Implemented using
ulongs

Fp : Z/pZ where p is a t_INT, not necessarily prime. Implemented as t_INTS
2,0 < 2 <p.

Fq:Z|X]/(p, T(X)), pat_INT, T a t_POL with Fp coefficients or NULL.
Implemented as t_POLs z with Fp coefficients, deg(z) < degT.

Z . the integers Z, implemented as t_INTS.

z . the integers Z, implemented using longs

Q : the rational numbers Q, implemented as t_INTs and t_FRACS.

Rg : a commutative ring, whose elements can be gadd-ed, gmul-ed, etc.

PARI/GP Workshop (13-17/09/2004) — p. 9/11

Applications

Many specialized routines are built on top of these basic ones, e.g. FpM_ker,
FpY_FpXY_resultant. And then of course, all high-level routines eventually
call such functions.

While programming with the PARI library, everything may be emulated by
generic routines and higher-level types such as t_POLMODsS, t_INTMODsS. At a
significant cost, in time and space.

To be done : implement asymptotically fast(er) algorithms, where that would
make a difference to intended applications. Tighter interfaces with GMP.

PARI/GP Workshop (13-17/09/2004) — p. 10/11

Plans

Release a new stable version (2.1 was released in 2000)

Replace the GP parser by GP2C (Problem : cannot maintain backward
compatibility)

Tighter integration with GMP (real arithmetic), fix transcendental functions
(too slow).

Screen crucial individual routines and algorithms to detect problems and
Inefficiencies.

Document all PARI routines, add examples to all GP functions, write
specialized test suites.

Add selected useful algorithms. Either as new C code modules, or as GP
scripts.

PARI/GP Workshop (13-17/09/2004) — p. 11/11

