Introduction to PARI/GP (2/3) The number fields module

Karim Belabas
http://pari.math.u-bordeaux.fr/

Notations and structures

Let $K=\mathbb{Q}[X] /(T)$ a number field of degree N, \mathcal{O}_{K} its ring of integers; $T \in \mathbb{Z}[X]$ is monic.

Three number field structures can be associated to K in GP :

$$
\mathrm{nf}<\mathrm{bnf}<\mathrm{bnr}
$$

the last one being associated to K and a divisor $\mathfrak{f}=\mathfrak{f}_{0} \mathfrak{f}_{\infty}$. Obtained by nfinit, bnfinit, bnrinit applied to T, nf and (bnf, f) respectively. It is allowed to compute directly bnfinit(T).

- nf contains basic invariants : maximal order given by \mathbb{Z}-basis $\mathrm{nf} . \mathrm{zk}$, absolute discriminant nf.disc, signature (r_{1}, r_{2}) nf.sign, defining polynomial nf.pol, its roots nf.roots
- bnf contains an nf, its ideal class group and unit group $\mathrm{Cl}(K)$ (bnf.clgp), $U(K)$ (bnf.tu, bnf.fu). Both are abelian groups given by generators and their order, and technical data required to solve the two associated discrete logarithm problems.
- bnr contains a bnf, a conductor \mathfrak{f}, the ray class group $\mathrm{Cl}_{\mathfrak{f}}(K)$, and data associated to the discrete logarithm problem in $\mathrm{Cl}_{\mathfrak{f}}(K)$.

Warnings (1/2)

- The only non-trivial task when computing an nf is to factor the discriminant. Shortcut:

$$
\mathrm{nf}=\operatorname{nfinit}([\mathrm{T}, \mathrm{nfbasis}(\mathrm{~T}, 1)])
$$

But then, the result is a priori incorrect if a prime larger than primelimit divides the field discriminant.

- T = polredabs ($\mathrm{T}, 16$) will usually find a much nicer polynomial defining the same field K. (The 16 means : don't try to completely factor disc (T).) The result is a canonical polynomial defining K. An isomorphism test between $\mathbb{Q}[X] /(T)$ and $\mathbb{Q}[X] /(S)$ may be implemented as

$$
\text { polredabs }(S)==\operatorname{polredabs}(T),
$$

possibly with the 16 flag.

Warnings (2/2)

- Computing a bnf is a non-trivial randomized algorithm (may be slow). It uses a heuristic strengthening of the GRH. (For which there are scores of counter-examples, but which is usually correct.) Use

$$
\operatorname{bnf}=\operatorname{bnfinit}(\mathrm{T},,[0.3,12])
$$

to assume no more than the GRH (12 is the important constant here, improved bounds can be derived but this one is simple and universal). bnfcertify (bnf) removes the GRH assumption but is not practical for high degree fields.

- Computing a bnr is simple, provided the prime divisors of \mathfrak{f} are small.

Elements in K

Assume that K is represented by one of the previous structures, associated to polynomial T. An element of K is given as

- a t_INT, t_FRAC or t_POL (implicitly modulo T), or
- a t_POLMOD (modulo T), or
- a t_COL v of dimension N, representing

$$
\operatorname{sum}(i=1, N, v[i] * n f . z k[i])
$$

so given in terms of the computed integral basis.
Missing : compact representation as $\prod x_{i}^{e_{i}}$ for some $x_{i} \in \mathcal{O}_{K}, e_{i} \in \mathbb{Z}$. Used intensively in PARI, but all GP routines returning an nf element return it in the last (t _COL) format.

(Fractional) Ideals in K (1/2)

- an element defines a principal ideal.
- the functions idealprimedec and idealfactor output maximal ideals in a special structure (pr) containing pr.p, pr.e, pr.f, pr.gen.
- a t_MAT, preferably in Hermite Normal Form (HNF, echelon form), represents the \mathbb{Z}-module generated by its columns (which represent t_COL elements of K). If more than N generators are provided, routines assume this is actually an \mathcal{O}_{K}-module

(Fractional) Ideals in K (2/2)

All formats are allowed as input, but most routines output ideals as HNF matrices. Finding a 2 -element generating set $I=a \mathcal{O}_{K}+b \mathcal{O}_{K}$ is easy : idealtwoelt (nf, I). Finding a single generator when I is principal is also easy, provided a bnf for K could be computed : bnfisprincipal(bnf, I). This provides a factorisation $I=(\alpha) \prod g_{i}^{e_{i}}$, where the g_{i} are the generators of $\mathrm{Cl}(K)$ bnf. gen and $\alpha \in K$.

Divisors and congruence subgroups

A divisor \mathfrak{f} is input as [f_{0}, arch], where \mathfrak{f}_{0} is an ideal and arch is a $\{0,1\}$-vector with r_{1} components, giving the coefficients of the real places (associated to the real roots of T, in the same order as nf.roo).
Hint : bnrinit (bnf, f) requires a bnf argument containing the fundamental units. Use bnf $=\operatorname{bnfinit}(T, 1)$ to make sure this is the case.
Hint : use bnrinit (bnf, $\mathfrak{f}, 1$) to include generators for $\mathrm{Cl}_{\mathfrak{f}}(K)$ (required by some class field theoretic routines).

Class Field Theory

rnfkummer (bnr, , p) returns defining polynomials for all class fields of (prime) degree p over K and conductor \mathfrak{f}.
$\mathrm{v}=$ subgrouplist (bnr, $[p], 1$) outputs the list of congruence subgroups of index p in $\mathrm{Cl}_{\mathrm{f}}(K)$, and arbitrary conductor.
$\mathrm{v} 0=\operatorname{subgrouplist}(\mathrm{bnr},[p], 0)$, same with conductor \mathfrak{f}.
L = eval(setminus(Set(v), Set(v0)))
vector(\#L, i, bnrconductor(bnr,L[i])) ;
vector(\#L, i, rnfkummer(bnr,L[i])) ;

