Paradigms of PARI programming

Karim Belabas http://pari.math.u-bordeaux.fr/

This talk focuses on the current development version of the PARI library (2-2-8, to be released), freely available from anonymous CVS (Concurrent Version System), see

http://pari.math.u-bordeaux.fr/CVS.html

Let p be a prime number and $q := 2^p - 1$. Let

$$u_2 = 4;$$
 $u_{i+1} = u_i^2 - 2 \pmod{p}$ for $i > 2.$

Then q is prime iff $u_p = 0$.

Let p a prime number, $A \in \mathbb{F}_p[X]$ a squarefree polynomial. Let Q the endomorphism $\operatorname{Frob}_p - \operatorname{Id}$ of the *etale* algebra $\mathbb{F}_p[X]/(p, A)$. Then $\dim_{\mathbb{F}_p} \operatorname{Ker} Q = \omega(A)$, the number of distinct irreducible factors of A.

Let x, y two integers and initially $\begin{pmatrix} s_x & s_y \\ t_x & t_y \end{pmatrix} = \text{Id}$,

$$\begin{pmatrix} s_x & s_y \\ t_x & t_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

To apply ordinary Euclidean algorithm to right hand side, multiply the system from the left by $\begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix}$, with $q = \lfloor x/y \rfloor$. Iterate until y = 0 then the first line of the system reads

$$s_x x + s_y y = \gcd(x, y).$$

In practice, there's no need to update s_y and t_y since gcd(x, y) and s_x are enough to recover s_y .

Compute $\det A$ modulo several single precision primes p_i . Then use Chinese remainders to compute $\det A$.

Rigorous if $\prod_i p_i > 2 |\det A|$. The determinant is bounded by $\prod_j ||A_j||_2$ for instance.