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Definitions
The Brumer element
The Brumer-Stark Conjecture

k is a number field of degree n

K is a finite abelian extension over k

G := Gal(K/k)

wK is the number of roots of unity in K

ClK is the class group of K

S is the set of the infinite primes of k and of the finite prime
ideals in k that ramify in K

For each σ ∈ G , the partial zeta-function is

ζS(s, σ) :=
∑

(a,S)=1
σa=σ

1

Nas
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The Brumer element
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Theorem (Deligne and Ribet, Barsky, and Pi. Cassou-Noguès)

For every σ ∈ G
wK ζS(0, σ) ∈ Z

The Brumer element is the element of the group ring Z[G ] defined
by

γ := wK

∑
σ∈G

ζS(0, σ)σ−1

Xavier-François Roblot Checking the Brumer-Stark conjecture using PARI/GP



Statement of the conjecture
Current status of the conjecture

Checking the conjecture on an example

Definitions
The Brumer element
The Brumer-Stark Conjecture

Theorem (Deligne and Ribet, Barsky, and Pi. Cassou-Noguès)

For every σ ∈ G
wK ζS(0, σ) ∈ Z

The Brumer element is the element of the group ring Z[G ] defined
by

γ := wK

∑
σ∈G

ζS(0, σ)σ−1

Xavier-François Roblot Checking the Brumer-Stark conjecture using PARI/GP



Statement of the conjecture
Current status of the conjecture

Checking the conjecture on an example

Definitions
The Brumer element
The Brumer-Stark Conjecture

The Brumer-Stark Conjecture

Conjecture (The Brumer part)

The element γ kills ClK .
That is, for every fractional ideal A of K , the ideal Aγ is principal.

Let K ◦ be the set of anti-units of K

K ◦ := {x ∈ K : |x |P∞ = 1, ∀P∞ | ∞}

Conjecture (The Stark part)

For every fractional ideal A of K , there exists a generator αA of Aγ

that is an anti-unit. Furthermore, define λA ∈ K by λWK
A = αA,

then K (λA)/k is an abelian extension.
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Some reductions and special cases
Further results

The conjecture is true if k = Q (Stickelberger’s Theorem)

The conjecture is true if k is not totally real or K is not
totally complex

The conjecture is satisfied for A if it is a principal ideal

The conjecture is true if K is principal

The set of ideals satisfying the conjecture forms a group,
stable under the action of G
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Some reductions and special cases
Further results

The conjecture is true in the following cases

if K/k is quadratic [Tate]

if G ' Z/2Z× Z/2Z in general, and when G is of exponent 2
and has order > 4, assuming K/k is a tame extension [Sands]

if |G | = 4 and K/k is a sub-extension of a non-abelian Galois
extension K/k0 of degree 8 [Tate]

if K/k is a sub-extension of an abelian Galois extension K/k0

for which the conjecture is true [Sands, Hayes]

if G ' Z/4Z and k is real quadratic [Greither]

if [K : k] = 6, and [k : Q] = 2, or 3 and the discriminant of k
is coprime with 6 (except for some very special cases)
[Greither-Roblot-Tangedal]
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The example
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Let k = Q(
√

69), and K = K+(j) where K+ is the ray class field
of k of conductor 3 and j is a primitive third root of unity.
This example is one of the exceptions not covered by [GRT].
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The example
The strategy
The verification

Compute the Brumer element using L-functions

Find a minimal set {A1, . . . ,As} of Z[G ]-generators of ClK
For each A

Compute Aγ and check if it is principal
Call β a generator of Aγ , find a unit u such that α := uβ is an
anti-unit
Check if K (α1/wK ) is an abelian extension of k
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Let’s start GP!
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γ = wK

∑
χ∈Ĝ

LS(0, χ)eχ where eχ :=
1

|G |
∑
σ∈G

χ̄(σ)σ−1
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The example
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Let g be a generator of Clk(3∞1∞2).
Let σ := σg. Thus G = 〈σ〉.
Let ζ6 := exp(2iπ/6).

The character χa represented by [a] is the one defined by

χa(σ) := ζa
6 .

An element a0 + a1σ + · · ·+ a5σ
5 ∈ Z[G ] is represented by the

vector [a0, a1, . . . , a5].
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Let p be a prime ideal of k, P a prime ideal of K such that

P is above p is above p.

Let θ ∈ K such that K = Q(θ) and assume that

p - (ZK : Z[θ]) .

Then the Frobenius of p is the unique element σ ∈ G such that

σ(θ) ≡ θNp (mod P).
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Recall that wK = 6 so the torsion group of K is generated by ζ6.
Let N ∈ Z be such that

σ(ζ6) = ζN
6 .

Then an element α ∈ K is such that K (α1/6)/k is an abelian
extension iff

αN−σ =
αN

σ(α)

is a 6-th power in K .
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