Computation of values of *p*-adic Dirichlet *L*-functions using PARI/GP

Xavier-François Roblot

IGD, Université Claude Bernard – Lyon 1

September 14th, 2004

- (同) (三) (三)

Twisted partial zeta functions

- Definitions
- Twisted partial zeta functions and power series

2 p-adic measures

- Definitions
- p-adic measures and power series

9 p-adic interpolation

- The measure µ_{f,a,c}
- The functions $\varphi_s^{(m)}$
- p-adic twisted partial zeta function
- Computation of values of p-adic twisted partial zeta functions

- (日) (日) (日)

Definitions Twisted partial zeta functions and power series

Let $f \ge 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s = 1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = \left(c^{1-s} \chi(c) - 1\right) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi,s).$$

Definitions Twisted partial zeta functions and power series

Let $f \ge 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s = 1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = \left(c^{1-s} \chi(c) - 1\right) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi,s).$$

Let $f \ge 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s = 1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1\\a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = (c^{1-s}\chi(c)-1) \prod_{\ell|f} (1-\chi(\ell)\ell^{-s}) L(\chi,s).$$

Definitions Twisted partial zeta functions and power series

Lemma

For
$$r \in \mathbb{Q}$$
, set $\xi_r := \exp(2i\pi/r)$. Then

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n/c}^i n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a,\eta,s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can restated as

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} Z_f(a, \xi_{i/c}, s).$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

-2

Definitions Twisted partial zeta functions and power series

Lemma

For
$$r \in \mathbb{Q}$$
, set $\xi_r := \exp(2i\pi/r)$. Then

$$Z_f(a,c,s) = \sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n/c}^i n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a,\eta,s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can restated as

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} Z_f(a, \xi_{i/c}, s).$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

-2

Definitions Twisted partial zeta functions and power series

Define the following power series in T

$$\mathcal{F}_{f,a,\eta}(T) := rac{\eta^a(1+T)^a}{1-\eta^f(1+T)^f}$$

and the operator Δ on power series by

$$\Delta:=(1+T)\frac{d}{dT}.$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1 + T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1+T)^a \sum \eta^{nf} (1+T)^{nf} = \sum \eta^n (1+T)^n.$$

Definitions Twisted partial zeta functions and power series

Define the following power series in T

$$\mathsf{F}_{f, \mathbf{a}, \eta}(T) := rac{\eta^{\mathbf{a}} (1+T)^{\mathbf{a}}}{1 - \eta^{f} (1+T)^{f}}$$

and the operator Δ on power series by

$$\Delta := (1+T)\frac{d}{dT}.$$

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1 + T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^{a} (1+T)^{a} \sum_{n \ge 0} \eta^{nf} (1+T)^{nf} = \sum_{\substack{n \ge a(f) \\ a \ne n \ge a(f) \\ a \ne n \ge a(f)}} \eta^{n} (1+T)^{n}.$$

Definitions Twisted partial zeta functions and power series

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1 + T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^{a} (1+T)^{a} \sum_{n \ge 0} \eta^{nf} (1+T)^{nf} = \sum_{n \equiv a(f)} \eta^{n} (1+T)^{n}.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1+T)^n,$$

and so

$$\Delta^{k} F_{f,a,\eta}(T)|_{T=0} = \sum_{n \equiv a(f)} \eta^{n} n^{k} = Z_{f}(a,\eta,-k). \quad \Box$$

Computation of p-adic Dirichlet L-functions using PARI/GP

-2

Definitions Twisted partial zeta functions and power series

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1 + T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^{a}(1+T)^{a} \sum_{n \geq 0} \eta^{nf}(1+T)^{nf} = \sum_{n \equiv a(f)} \eta^{n}(1+T)^{n}.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1+T)^n,$$

and so

$$\Delta^{k} F_{f,a,\eta}(T)|_{T=0} = \sum_{n \equiv a(f)} \eta^{n} n^{k} = Z_{f}(a,\eta,-k). \quad \Box$$

Computation of *p*-adic Dirichlet *L*-functions using PARI/GP

Twisted partial zeta functions *p*-adic measures *p*-adic measures and power series

A measure μ is a linear form on $C := C(\mathbb{Z}_p, \mathbb{C}_p)$ such that there exists B > 0 with

$$|\mu(f)| \leq B|f|,$$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$. Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore lim $a_n = 0$.

Theorem

A linear form μ on C is a measure iff there exits B > 0 such that for all $n \ge 0$

 $\int \binom{x}{n} d\mu(x) < B.$

Furthermore, if μ is a measure

Twisted partial zeta functions *p*-adic measures *p*-adic measures and power series

A measure μ is a linear form on $C := C(\mathbb{Z}_p, \mathbb{C}_p)$ such that there exists B > 0 with

 $|\mu(f)| \le B|f|,$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$. Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on C is a measure iff there exits B > 0 such that for all $n \ge 0$

 $\left| \int \binom{x}{n} d\mu(x) \right| < B.$

Furthermore, if μ is a measure

Definitions *p*-adic measures and power series

Any function $f \in C$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on ${\mathcal C}$ is a measure iff there exits B>0 such that for all $n\geq 0$

$$\left|\int \binom{x}{n} d\mu(x)\right| < B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n \ge 0} a_n \int \begin{pmatrix} x \\ n \end{pmatrix} d\mu(x).$$

Xavier-François Roblot Computation of *p*-adic Dirichlet *L*-functions using PARI/GP

Definitions *p*-adic measures and power series

Any function $f \in C$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on ${\cal C}$ is a measure iff there exits B>0 such that for all $n\geq 0$

$$\left| \int \binom{x}{n} d\mu(x) \right| < B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n\geq 0} a_n \int \begin{pmatrix} x \\ n \end{pmatrix} d\mu(x).$$

Computation of p-adic Dirichlet L-functions using PARI/GP

p-adic measures and power series

Measures on C and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondance by the formula

$$F_{\mu}(T) := \int (1+T)^x d\mu(x) = \sum_{n\geq 0} \int {\binom{x}{n}} d\mu \cdot T^n.$$

$$\Delta^k F_\mu(T)|_{\tau=0} = \int x^k \, d\mu(x).$$

Definitions *p*-adic measures and power series

Measures on C and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondance by the formula

$$F_{\mu}(T) := \int (1+T)^x d\mu(x) = \sum_{n\geq 0} \int {\binom{x}{n}} d\mu \cdot T^n.$$

Recall that $\Delta := (1 + T) \frac{d}{dT}$.

Theorem

For all $k \geq 0$

$$\Delta^k F_\mu(T)|_{T=0} = \int x^k d\mu(x).$$

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Twisted partial zeta functions *p*-adic measures *p*-adic interpolation *p*-adic interpolation *p*-adic twisted partial zeta function *p*-adic twisted partial zeta function *p*-adic twisted partial zeta function

Embed
$$\overline{\mathbb{Q}} \subset \mathbb{C}_p$$
, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_{\rho}[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all $k \ge 0$, we have

$$\int x^k \, d\mu_{f,a,c}(x) = Z_f(a,c,-k).$$

<ロ> (四) (四) (三) (三) (三)

-2

Twisted partial zeta functions ρ -adic measures ρ -adic interpolation ρ -adic interpolation ρ -adic twisted partial zeta function ρ -adic twisted partial zeta function ρ -adic twisted partial zeta function

Embed
$$\overline{\mathbb{Q}} \subset \mathbb{C}_p$$
, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_{\rho}[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all $k \geq 0$, we have

1

$$\int x^k d\mu_{f,a,c}(x) = Z_f(a,c,-k).$$

イロト イヨト イヨト イヨト

-

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic twisted partial zeta function p-adic twisted partial zeta function p-adic twisted partial zeta function

Recall that $\mathbb{Z}_{p}^{\times} := \mathbb{Z}_{p} \setminus p\mathbb{Z}_{p}$ splits as $\mathbb{Z}_{p}^{\times} = W_{p} \times \mathcal{U}_{p}$ with W_{p} the torsion part and $\mathcal{U}_{p} = 1 + q\mathbb{Z}_{p}$. For $x \in \mathbb{Z}_{p}^{\times}$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_{p} (resp. \mathcal{U}_{p}).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\varphi_{s}^{(m)}: \mathbb{Z}_{p}^{\times} \to \mathbb{Z}_{p}$$
$$x \mapsto \omega(x)^{m} \langle x \rangle^{-s}$$

is continuous. The function is extended to \mathbb{Z}_p by setting $\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the "p-adic analogue" of x^{-s} .

Recall that $\mathbb{Z}_p^{\times} := \mathbb{Z}_p \setminus p\mathbb{Z}_p$ splits as $\mathbb{Z}_p^{\times} = W_p \times \mathcal{U}_p$ with W_p the torsion part and $\mathcal{U}_p = 1 + q\mathbb{Z}_p$. For $x \in \mathbb{Z}_p^{\times}$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_p (resp. \mathcal{U}_p).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\varphi_{s}^{(m)}: \mathbb{Z}_{p}^{\times} \to \mathbb{Z}_{p}$$
$$x \mapsto \omega(x)^{m} \langle x \rangle^{-s}$$

is continuous. The function is extended to \mathbb{Z}_p by setting $\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the "p-adic analogue" of x^{-s} .

< ロト (周) (日) (日)

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic interpolation p-adic measures p-adic interpolation p-adi

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s) := \int \varphi_s^{(m)}(x) \, d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of *m* modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is *the p*-adic twisted partial zeta function.

Theorem

Assume p divides f. Then for all $k \ge 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a,c,-k)=Z_f(a,c,-k).$$

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic interpolation p-adic measures p-adic interpolation p-adi

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s) := \int \varphi_s^{(m)}(x) \, d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of *m* modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f. Then for all $k \ge 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a,c,-k)=Z_f(a,c,-k).$$

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic interpolation p-adic measures p-adic interpolation p-adi

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s) := \int \varphi_s^{(m)}(x) \, d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of *m* modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f. Then for all $k \ge 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a,c,-k)=Z_f(a,c,-k).$$

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic visted partial zeta function p-adic twisted partial zeta functions

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_{s}^{(-1)}(x) = \sum_{n \ge 0} \phi_{n} \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n\geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a,c,s) = \int \varphi_s^{(-1)}(x) \, d\mu(x) = \sum_{n \ge 0} \phi_n f_n.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

Twisted partial zeta functions p-adic measures p-adic interpolation p-adic interpolation p-adic visted partial zeta function p-adic twisted partial zeta functions

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_s^{(-1)}(x) = \sum_{n \ge 0} \phi_n \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n\geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a,c,s) = \int \varphi_s^{(-1)}(x) \, d\mu(x) = \sum_{n \ge 0} \phi_n f_n.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト

4) Computation of the coefficients ϕ_n

- Computation of $\omega(x)$ and $\langle x
 angle$
- Computation of $\varphi_k^{(m)}(x)$
- Computation of the ϕ_n 's

5 Computation of the coefficients f_n

- Computation of $F_{f,a,\eta}$
- Computation of F_{f,a,c}

6 Computation of $L_p(k, \chi)$

・ 同 ト・ ・ ヨート・ ・ ヨ

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

<ロ> (四) (四) (三) (三) (三)

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\begin{array}{l} \text{Computation of } \omega(\textbf{x}) \text{ and } \langle \textbf{x}\rangle \\ \text{Computation of } \varphi_k^{(m)}(\textbf{x}) \\ \text{Computation of the } \phi_n\text{'s} \end{array}$

Code: initialization of the roots of unity

Call vp the vector returned by the previous function.

 $\begin{array}{l} \text{Computation of } \omega(\textbf{x}) \text{ and } \langle \textbf{x}\rangle \\ \text{Computation of } \varphi_k^{(m)}(\textbf{x}) \\ \text{Computation of the } \phi_n\text{'s} \end{array}$

Code: initialization of the roots of unity

$$p1 = x^{(p-1)} - 1; \\ p2 = vector(p - 1, j, x - j); \\ p1 = polhensellift(p1, p2, p, precp); \\ return(vector(p - 1, j, -polcoeff(p1[j], 0)) \\ + O(p^{precp}));$$

Call vp the vector returned by the previous function.

イロト イヨト イヨト イヨト

-

 $\begin{array}{l} \text{Computation of } \omega(\textbf{x}) \text{ and } \langle \textbf{x}\rangle \\ \text{Computation of } \varphi_k^{(m)}(\textbf{x}) \\ \text{Computation of the } \phi_n\text{'s} \end{array}$

Code: initialization of the roots of unity

Call vp the vector returned by the previous function.

Call teichm(x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^{\times}$. Recall that

$$\varphi_k^{(m)}(x) := egin{cases} 0 & ext{if } x \in p\mathbb{Z}_p, \ \omega(x)^m \langle x
angle^{-k} & ext{otherwise.} \end{cases}$$

Code: computation of $\varphi_k^{(m)}(x)$

Call teichm(x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^{\times}$. Recall that

$$arphi_k^{(m)}(x) := egin{cases} 0 & ext{if } x \in p\mathbb{Z}_p, \ \omega(x)^m \langle x
angle^{-k} & ext{otherwise.} \end{cases}$$

Code: computation of $\varphi_k^{(m)}(x)$

Computation of $\omega(x)$ and $\langle x \rangle$ Computation of $\varphi_k^{(m)}(x)$ Computation of the ϕ_n 's

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n \ge 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all n > A.

Code: computation of $\phi_0, \ldots, \phi_{N-1}$

(日) (部) (注) (注)

Computation of $\omega(x)$ and $\langle x \rangle$ Computation of $\varphi_k^{(m)}(x)$ Computation of the ϕ_n 's

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n \ge 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all n > A.

Code: computation of $\phi_0, \ldots, \phi_{N-1}$

・ロト ・ 日ト ・ モト・・ モト・

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Let e be a root of unity of order c, recall that

$$F_{f,a,\mathbf{e}}(T) := \frac{\mathbf{e}^a(1+T)^a}{1-\mathbf{e}^f(1+T)^f}$$

Code: Compute $F_{f,a,\eta}$

```
mon = (1 + O(p^precp))*(1 + X + O(precX));
den = 1 - e^f*mon^f;
num = e^a*mon^a;
return (num/den);
```

 $\begin{array}{l} \text{Computation of the coefficients } \phi_n \\ \text{Computation of the coefficients } f_n \\ \text{Computation of } L_p(k,\chi) \end{array}$

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Let e be a root of unity of order c, recall that

$$F_{f,a,\mathbf{e}}(T) := \frac{\mathbf{e}^a(1+T)^a}{1-\mathbf{e}^f(1+T)^f}$$

Code: Compute $\overline{F_{f,a,\eta}}$

<ロ> (四) (四) (三) (三) (三)

-1

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^{i}}(T)$$

where ξ is any primitive *c*-th root of unity.

Code: "formal" *c*-th root of unity

$$e = Mod(y, (y^c - 1)/(y - 1));$$

Code: compute *F_{f,a,c}*

・ロト ・四ト ・ヨト ・ヨト

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^{i}}(T)$$

where ξ is any primitive *c*-th root of unity.

Code: "formal" *c*-th root of unity

$$e = Mod(y, (y^c - 1)/(y - 1));$$

Code: compute $F_{f,a,c}$

・ロト ・回ト ・ヨト ・ヨト

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^{i}}(T)$$

where $\boldsymbol{\xi}$ is any primitive c-th root of unity.

Code: "formal" *c*-th root of unity

$$e = Mod(y, (y^c - 1)/(y - 1));$$

Code: compute $F_{f,a,c}$

<ロ> (四) (四) (三) (三) (三)

Computation of $F_{f,a,\eta}$ Computation of $F_{f,a,c}$

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^{i}}(T)$$

where ξ is any primitive *c*-th root of unity.

Code: "formal" *c*-th root of unity

$$e = Mod(y, (y^c - 1)/(y - 1));$$

Code: compute $\overline{F_{f,a,c}}$

Take $f = \operatorname{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = (c^{1-s}\chi(c)-1)(1-\chi(p)p^{-s})L(\chi,s).$$

The corresponding *p*-adic *L*-function is defined by

$$L_{p}(\chi, s) := (c \varphi_{s}^{(-1)}(c)\chi(c) - 1)^{-1} \sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a)Z_{f}(a, c, s).$$

<ロ> (四) (四) (三) (三) (三)

-2

Take $f = \operatorname{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = (c^{1-s} \chi(c) - 1)(1 - \chi(p)p^{-s}) L(\chi,s).$$

The corresponding *p*-adic *L*-function is defined by

$$L_{p}(\chi, s) := (c \varphi_{s}^{(-1)}(c)\chi(c) - 1)^{-1} \sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a)Z_{f}(a, c, s).$$