
Closures and parallelism

Closures and parallelism
A cruise on the moat

B. Allombert

Institut de Mathématiques de Bordeaux
Univ. Bordeaux, CNRS, INRIA

24/06/2025

Closures and parallelism

t_CLOSURE

t_CLOSURE holds GP functions.
The length (lg(C)) can be 6, 7 or 8.
▶ inline closure: 6
▶ function: 7
▶ true closure: 8

closure_arity(C): arity of the closure.

Closures and parallelism

True closures are GP functions that have a non empty context of
execution:

? my(z=3);trueclosure(x)=x+z
%1 = (x)->my(z=3);x+z

Inline closure is code that appear inside loop:

? for(i=1,100,print(i^2+1))

print(i^2+1) is an inline closure (that depend on i).

Closures and parallelism

Associating entree* to C functions
For GP to be able to call a C function, the C function need to have
an entree*. There are three way to create it:
▶ use install in GP.
▶ use pari_add_function between pari_init() and

pari_mt_init(); see examples/pari-mt.c.
▶ add a function description in src/functions/

In each case, three data are needed
▶ the name of the entree*.
▶ the name of the C function associated to it.
▶ the prototype code definin the GP interface to the C function.

If the name of the entree* is a valid GP variable name, the C
function will be available under GP under that name. It is
customary to prefix private functions name with _.

Closures and parallelism

Prototype codes

The prototype code is as follow: if the first letter is one of vluim
the return type is
▶ v: void
▶ l: long
▶ u: ulong
▶ i: int
▶ m: incomplete GEN

otherwise the return type is GEN.

Closures and parallelism

Codes for argument
Then a code is added for each argument of the C function in order:

▶ G: GEN
▶ DG: GEN or NULL
▶ L: long
▶ U: ulong
▶ s: const char *
▶ n: long variable number
▶ p: the precision (prec)
▶ V: inline variable for inline closure
▶ I: inline closure returning void
▶ E: inline closure returning GEN
▶ J: closure of arity 1 for parallel code

See ??prototype for more detail.

Closures and parallelism

Example

Under GP, do
install("gadd",GG,"add")
to define a GP function add that call gadd.
Or add a file src/functions/programming/add with

Function: add
C-Name: gadd
Prototype: GG
Section: programming/internals
Help: addition worker

and rebuild PARI.

Closures and parallelism

Creating closure in C
▶ To convert GP text to a t_CLOSURE do

gp_read_str("(x)->my(z=3);x+z").
▶ To create t_CLOSURE from a entree*, use strtofunction

or strtoclosure for true closure.

? install(strtofunction,s)
? install(strtoclosure,sLDGDG)
? s=strtofunction("_+_")
%3 = _+_
? s=strtoclosure("_+_",1,5)
%4 = (v1)->_+_(v1,5)
? s=strtoclosure("_+_",2,3,4)
%5 = ()->_+_(3,4)
? s()
%6 = 7

Closures and parallelism

Calling closure in C
For a closure returning a GEN, of arity 0, 1, 2, . . .:
▶ GEN closure_callgen0(GEN C)
▶ GEN closure_callgen1(GEN C, GEN x)
▶ GEN closure_callgen2(GEN C, GEN x, GEN y)
▶ GEN closure_callgenvec(GEN C, GEN args)

For a closure without return value, of arity 1.
▶ void closure_callvoid1(GEN C, GEN x)

For a closure under localbitprec(prec):
▶ GEN closure_callgen0prec(GEN C, long prec)
▶ GEN closure_callgen1prec(GEN C, GEN x, long prec)
▶ GEN closure_callgenvecprec(GEN C, GEN args, long

prec)

Closures and parallelism

Example: apply

GEN my_apply(GEN C, GEN V)
{

long i, l = lg(V);
GEN W = cgetg(l, t_VEC);
for (i = 1; i < l; i++)

gel(W, i) = closure_callgen1(C, gel(V,i));
return W;

}

Closures and parallelism

Inline closure in C

In the example: matrix(4,5,i,j,i+j), the prototype code of
matrix is GDGDVDVDE where the first DV is for the inline variable i,
the second for j and DE is for the inline closure i+j.
▶ void push_lex(GEN a, GEN C): push a new inline variable

with value a (and number −1), where C is the inline closure,
decreasing the number of the previously defined variables.

▶ void set_lex(vn, a): set the preexisting inline variable
with number vn to a.

▶ void pop_lex(long n): pop the last n inline variables.

Closures and parallelism

Inline closure in C

▶ closure_evalvoid(C): call C , ignoring the return value.
▶ closure_evalnobrk(C): call C , get the return value,

disallow break,next,return.
▶ closure_evalgen(C): call C , get the return value, allow

break,next,return.
▶ loop_break(): check whether break,next,return

happened.

Closures and parallelism

Example

void forprime(GEN a, GEN b, GEN code)
{

forprime_t T;
GEN p;
forprime_init(&T, a,b);
push_lex(gen_0, code);
while((p=forprime_next(&T)))
{

set_lex(-1,p);
closure_evalvoid(code);
if (loop_break()) break;

}
pop_lex(1);

}

Closures and parallelism

closuretoinl
closuretoinl(C): convert a closure to an
pseudo-inline closure suitable for codes E and I
Example:

? install("forprime","vV=GGI","myforprime1")
? myforprime1(p=2,10,print1(p," "))
2 3 5 7
? install("closuretoinl","G")
? install("forprime","vGGG","myforprime2")
? myforprime2(2,10,closuretoinl(p->print1(p," ")))
2 3 5 7
? my(z=3);myforprime2(2,10,closuretoinl(p->z+=p));z
%6 = 3

The catch is that the closure is executed in a new lexical scope.

Closures and parallelism

Parallelism in libpari: parapply
To run code in a parallel section, it is necessary to embed it in a
t_CLOSURE so that it can be send across the network with MPI.
In libpari it is customary to call such private C function with the
prefix worker, to prefix the GP name with _ and to add the C
prototype to src/headers/paripriv.h, and use the GP section
programming/internals.
For example to use parapply with GEN myfun_worker(GEN x,
GEN c) with c a user-specified parameter: add a file in
src/functions/ with

Function: _myfun_worker
C-Name: myfun_worker
Prototype: GG
Section: programming/internals
Help: worker for myfun

Closures and parallelism

Calling parapply

Then we can convert it to a t_CLOSURE and call parapply on it:

GEN parmyfun(GEN D, GEN c)
{

GEN worker = strtoclosure(
"_myfun_worker", 1, c);

return parapply(worker, D);
}

Closures and parallelism

Low level parallel interface

A more flexible, lower-level interface is available that finer control:

GEN parapply(GEN worker, GEN V)
{

long i, l = lg(V), pending = 0;
struct pari_mt pt;
GEN W = cgetg(l, typ(V));
mt_queue_start_lim(&pt, worker, l-1);

Closures and parallelism

for (i = 1; i < l || pending; i++)
{

long workid;
GEN done, work = i<l? mkvec(gel(V,i)): NULL;
mt_queue_submit(&pt, work);
done = mt_queue_get(&pt, &workid, &pending);
if (done)

gel(W,workid) = done;
}
mt_queue_end(&pt); return V;

}

When using MPI, the worker is send only once to each nodes,
while mt_queue_submit send work to a single node. One should
take care to minimize data transfer.

