
Low-level libpari functions for finite fields

Low-level libpari functions for finite fields
A guided tour

B. Allombert

Institut de Mathématiques de Bordeaux
Univ. Bordeaux, CNRS, INRIA

24/06/2025



Low-level libpari functions for finite fields

Introduction to function families in libpari

While GEN can be quite complex, they are very few type numbers
available. Thus the types only encodes the structure of the object
but not any mathematical semantic.
To fix that, we created semantic labels that are used in libpari
function prefix to denote the mathematical meaning of its
arguments.
This makes the code more readable since we always know what is
the meaning of the functions arguments, and it is easier to find
them. However such functions never check their arguments, so it is
always possible to substitute a t_VEC for a t_COL for example.
Sometime different functions can have identical implementation.



Low-level libpari functions for finite fields

Function family: Fp

For p a t_INT, a Fp is a t_INT implicitely modulo p.
To reduce an integer x modulo p use modii(x,p)
For x , y , p t_INT, some members of this family:
▶ GEN Fp_add(GEN x, GEN y, GEN p) return x + y (mod p)
▶ GEN Fp_sub(GEN x, GEN y, GEN p) return x − y (mod p)
▶ GEN Fp_mul(GEN x, GEN y, GEN p) return xy (mod p)

etc.



Low-level libpari functions for finite fields

Function family Fl

For p a ulong, a Fl is a ulong x implicitely modulo p. It is
required that x < p.
To convert a t_INT x to a Fl use umodiu(x,p).
For x , y , p ulong with x < p and y < p, some members of this
family:
▶ ulong Fl_add(ulong x, ulong y, ulong p) return x + y

(mod p)
▶ ulong Fl_sub(ulong x, ulong y, ulong p) return x − y

(mod p)
▶ ulong Fl_mul(ulong x, ulong y, ulong p) return xy

(mod p)



Low-level libpari functions for finite fields

Preconditionned reduction: Fl..._pre

To speed up reduction mod p (especially on intel CPU), we can
compute a pseudo inverse ulong pi=Fl_get_red(p); and then
use the Fl..._pre functions:
▶ ulong Fl_mul_pre(ulong x, ulong y, ulong p, ulong

pi)
▶ ulong Fl_sqr_pre(ulong x, ulong p, ulong pi)

etc.



Low-level libpari functions for finite fields

Function families ZV/ZC/ZM/FpV/FpC/FpM
ZV (resp. ZC) are t_VEC (resp. t_COL) with t_INT coefficients. ZM
are matrices with t_INT coefficients.
Some members of these families:
▶ GEN ZC_add(GEN x, GEN y)
▶ GEN ZM_mul(GEN x, GEN y)
▶ GEN ZM_ZC_mul(GEN x, GEN y)

FpV, FpC, FpM idem but modulo p. Some members of these
families:
▶ GEN FpC_add(GEN x, GEN y, GEN p)
▶ GEN FpV_add(GEN x, GEN y, GEN p)
▶ GEN FpM_det(GEN x, GEN p)

To reduce the coefficients modulo p use
▶ GEN FpC_red(GEN x, GEN p)
▶ GEN FpV_red(GEN x, GEN p)
▶ GEN FpM_red(GEN x, GEN p)



Low-level libpari functions for finite fields

Function families Flv/Flc/Flm

Flv and Flc are identical, both are t_VECSMALLs with coefficients
uel(v,i)<p.
Flm are t_MAT whose colums are actually Flc.
�

Flm are not well-supported by GP.
Some members of these families:
▶ GEN Flv_add(GEN x, GEN y, ulong p)
▶ GEN Flm_mul(GEN x, GEN y, ulong p)
▶ GEN Flm_Flc_mul(GEN x, GEN y, ulong p)
▶ GEN Flm_mul_pre(GEN x, GEN y, ulong p, ulong pi)
▶ GEN Flm_Flc_mul_pre(GEN x, GEN y, ulong p, ulong

pi)



Low-level libpari functions for finite fields

To convert ZV/ZC/FpV/FpC to Flv/Flc use
▶ GEN ZV_to_Flv(GEN x, ulong p)

To convert ZM/FpM to Flm use
▶ GEN ZM_to_Flm(GEN x, ulong p)

To lift Flv/Flc/Flm to ZV/ZC/ZM use
▶ GEN Flv_to_ZV(GEN x)
▶ GEN Flc_to_ZC(GEN x)
▶ GEN Flm_to_ZM(GEN x)



Low-level libpari functions for finite fields

F2v/F2c

F2v and F2c are identical. They are t_VECSMALL storing a bit
vector. v[1] is the dimension of the vector. The coefficients can be
read or set using
▶ ulong F2v_coeff(GEN x,long v)
▶ void F2v_set(GEN x,long v)
▶ void F2v_clear(GEN x,long v)
▶ void F2v_flip(GEN x,long v)

To convert ZV/ZC/FpV/FpC to F2v/F2c use
▶ GEN ZV_to_F2v(GEN x)

To convert Flv/Flc F2v/F2c use
▶ GEN Flv_to_F2v(GEN x)



Low-level libpari functions for finite fields

Function family F2m
F2m are t_MAT whose columns are actually F2c. The coefficients
can be read or set using
▶ ulong F2m_coeff(GEN x, long a, long b)
▶ void F2m_clear(GEN x, long a, long b)
▶ void F2m_set(GEN x, long a, long b)
▶ void F2m_flip(GEN x, long a, long b)

To convert ZM/FpM (modulo 2) to F2m use
▶ GEN ZM_to_F2m(GEN x)

To convert Flm (modulo 2) to F2m use
▶ GEN Flm_to_F2m(GEN x)

Some members of these families:
▶ GEN F2m_mul(GEN x, GEN y)
▶ GEN F2m_F2c_mul(GEN x, GEN y)
▶ GEN F2m_ker(GEN x)



Low-level libpari functions for finite fields

Function family ZX

ZX: t_POL whose elements are t_INT.
Some members of this family:
▶ GEN ZX_add(GEN x, GEN y, GEN p) return x + y
▶ GEN ZX_sub(GEN x, GEN y, GEN p) return x − y
▶ GEN ZX_mul(GEN x, GEN y, GEN p) return xy

Note that in that case we have signe(x)=0 iff lgpol(x)==0. x
are assumed to be in the same variable which is not checked.



Low-level libpari functions for finite fields

Function family FpX

FpX: t_POL whose elements are t_INT considered modulo p
To reduce a ZX modulo p use
▶ GEN FpX_red(GEN x, GEN p)

Some members of this family:
▶ GEN FpX_add(GEN x, GEN y, GEN p)
▶ GEN FpX_rem(GEN x, GEN y, GEN p)
▶ GEN FpX_Fp_mul(GEN x, GEN y, GEN p)



Low-level libpari functions for finite fields

Function family Flx

Flx are t_VECSMALL encoding polynomials with Fl coeffients.
▶ degpol(x): degree of x (−1 if x = 0), degpol(x)=lg(x)-3.
▶ lgpol(x): 1+degpol(x), lg(x)-2.
▶ signe(x) is not defined. x = 0 iff lgpol(x) = 0.
▶ x[1]: shifted variable number
▶ Flx_lead(x): leading coefficient.
▶ Flx_constant: constant coefficient.
▶ pol0_Flx(sv), pol1_Flx(sv), polx_Flx(sv) 0, 1, and x

in shifted variable sv .
If P is of degree d , the coefficients of degree 0 ≤ i ≤ d can be
accessed with uel(P,i+2), so that uel(P,i+2)<p and
uel(P,d+2) must not be 0.



Low-level libpari functions for finite fields

Some members of this family:
▶ GEN Flx_add(GEN x, GEN y, ulong p)
▶ GEN Flx_rem(GEN x, GEN y, ulong p)
▶ GEN Flx_rem_pre(GEN x, GEN y, ulong p, ulong pi)
▶ GEN Flx_Fl_mul(GEN x, ulong y, ulong p)
▶ GEN Flx_Fl_mul_pre(GEN x, ulong y, ulong p, ulong

pi)

To convert a ZX/FpX to a Flx use
▶ GEN ZX_to_Flx(GEN x, ulong p)

To lift a Flx to a ZX use
▶ GEN Flx_to_ZX(GEN x)



Low-level libpari functions for finite fields

Function family F2x

F2x are t_VECSMALL encoding polynomials with {0, 1} coeffients.
▶ F2x_degree(x): degree of x (−1 if x = 0).
▶ x[1] shifted variable number.
▶ signe(x) is not defined. x = 0 iff lgpol(x) = 0.
▶ pol0_F2x(sv), pol1_F2x(sv), polx_F2x(sv) 0, 1, and x

in shifted variable sv .
The coefficients can be read or set using
▶ ulong F2x_coeff(GEN x,long v)
▶ void F2x_set(GEN x,long v)
▶ void F2x_clear(GEN x,long v)
▶ void F2x_flip(GEN x,long v)



Low-level libpari functions for finite fields

Some members of this family:
▶ GEN F2x_add(GEN x, GEN y)
▶ GEN F2x_rem(GEN x, GEN y)

Some conversion functions:
▶ GEN ZX_to_F2x(GEN x)
▶ GEN Flx_to_F2x(GEN x)
▶ GEN F2x_to_ZX(GEN x)
▶ GEN F2x_to_Flx(GEN x)



Low-level libpari functions for finite fields

Family function: FpXQ

FpXQ are FpX modulo some FpX T . They denote elements of the
quotient ring Z/pZ[X ]/(T ).
To reduce a ZX to a FpXQ use
GEN FpXQ_red(GEN x, GEN T, GEN p)
Some members of these families:
▶ GEN FpXQ_mul(GEN x, GEN y, GEN T, GEN p)

return xy modulo T
▶ GEN FpXQ_sqr(GEN x, GEN T, GEN p)

return x2 modulo T



Low-level libpari functions for finite fields

Precomputed inverse for FpXQ

To speed up modular reduction, it is possible to replace T by a
precomputed inverse, by doing T = FpX_get_red(T, p); which
accepted as a remplacement for T by FpX_rem. However, as a
consequence, when implementing new FpXQ functions, T should
not be accessed directly. The following accessors are provided
▶ get_FpX_degree(T): return the degree of the original T .
▶ get_FpX_var(T): return the variable number of the original

T .
▶ get_FpX_mod(T): (rarely needed) return the original T .



Low-level libpari functions for finite fields

Family Fq

Fq are similar to FpXQ except that Fq can also be t_INT, in which
case T can be NULL, to denote Fp.
Some member of the family:
▶ GEN Fq_mul(GEN x, GEN y, GEN T, GEN p)
▶ GEN Fq_sqr(GEN x, GEN T, GEN p)



Low-level libpari functions for finite fields

Flxq/F2xq

Flxq are Flx modulo some Flx T . They are required to be of
degree less than T .
F2xq are F2x modulo some F2x T . They are required to be of
degree less than T .
Some examples:
▶ GEN Flxq_mul(GEN x, GEN y, GEN T, ulong p)
▶ GEN Flxq_sqr_pre(GEN x, GEN T, ulong p, ulong pi)
▶ GEN Flx_Flxq_eval(GEN x, GEN y, GEN T, ulong p)
▶ GEN Flx_Flxq_eval_pre(GEN x, GEN y, GEN T, ulong

p, ulong pi)
▶ GEN F2xq_mul(GEN x, GEN y, GEN T)
▶ GEN F2x_F2xq_eval(GEN x, GEN y, GEN T)



Low-level libpari functions for finite fields

Precomputed inverse for Flxq

To speed up modular reduction, it is possible to replace T by a
precomputed inverse, by doing T = Flx_get_red(T, p); or T =
Flx_get_red_pre(T, p, pi); which accepted as a
remplacement for T by Flx_rem and Flx_rem_pre. However, as
a consequence, when implementing new Flxq functions, T should
not be accessed directly. The following accessors are provided
▶ get_Flx_degree(T): return the degree of the original T .
▶ get_Flx_var(T): return the shifted variable number of the

original T .
▶ get_Flx_mod(T): (rarely needed) return the original T .



Low-level libpari functions for finite fields

Family functions: FqC/FqV/FqM

FqC/FqV/FqM are vectors/matrices with Fq coefficients.
To reduce a FqC/FqV/FqM use
▶ GEN FqC_red(GEN x, GEN T, GEN p)
▶ GEN FqV_red(GEN x, GEN T, GEN p)
▶ GEN FqM_red(GEN x, GEN T, GEN p)



Low-level libpari functions for finite fields

Family functions:
FlxqC/FlxqV/FlxqM/F2xqC/F2xqV/F2xqM

FlxqC/FlxqV/FlxqM are vectors/matrices with Flxq coefficients.
F2xqC/F2xqV/F2xqM are vectors/matrices with F2xq coefficients.
Some examples:
▶ GEN FlxqM_FlxqC_mul(GEN x, GEN y, GEN T, ulong p)
▶ GEN FlxqM_ker(GEN x, GEN T, ulong p)
▶ GEN F2xqM_F2xqC_mul(GEN x, GEN y, GEN T)
▶ GEN F2xqM_ker(GEN x, GEN T)

Conversions:
▶ GEN FqC_to_FlxqC(GEN x, GEN T, ulong p)
▶ GEN FqM_to_FlxqM(GEN x, GEN T, ulong p)
▶ GEN FlxC_to_ZXC(GEN x)
▶ GEN FlxM_to_ZXM(GEN x)
▶ GEN F2xC_to_ZXC(GEN x)
▶ GEN F2xM_to_ZXM(GEN x)



Low-level libpari functions for finite fields

Family functions: FpXQX, FqX, FlxqX, F2xqX

FpXQX are t_POL whose coefficients are either t_INT or FpXQ of
degree less than T . FqX are similar except that when all
coefficients are t_INT, we allow T to be NULL.
FlxqX are t_POL whose coefficients are Flxq. F2xqX are t_POL
whose coefficients are F2xq.
Some members of this family:
▶ GEN FpXQX_rem(GEN x, GEN y, GEN T, GEN p)
▶ GEN FqX_rem(GEN x, GEN y, GEN T, GEN p)
▶ GEN FlxqX_rem(GEN x, GEN y, GEN T, ulong p)
▶ GEN F2xqX_rem(GEN x, GEN y, GEN T)



Low-level libpari functions for finite fields

Conversion functions

▶ To convert a FpXQX to a FlxqX, with v=varn(T), use
GEN ZXX_to_FlxX(GEN B, ulong p, long v)

▶ To convert a FpXQX to a F2xqX, with v=varn(T), use
GEN ZXX_to_F2xX(GEN B, long v)

▶ To convert a FlxqX to a F2xqX, use
GEN FlxX_to_F2xX(GEN B)

▶ To convert a FlxqX to a FpXQX, use
GEN FlxX_to_ZXX(GEN B)

▶ To convert a F2xqX to a FpXQX, use
GEN F2xX_to_ZXX(GEN B)

▶ To convert a F2xqX to a FlxqX, use
GEN F2xX_to_FlxX(GEN B)



Low-level libpari functions for finite fields

Family functions: FpXQXQ, FqXQ, FlxqXQ, F2xqXQ
▶ FpXQXQ are FpXQX modulo some FpXQX S.
▶ FqXQ are FqX modulo some FqX S.
▶ FlxqXQ are FlxqX modulo some FlxqX S.
▶ F2xqXQ are F2xqX modulo some F2xqX S.

Some members of these families:
▶ GEN FpXQXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p)
▶ GEN FqXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p)
▶ GEN FlxqXQ_mul(GEN x, GEN y, GEN S, GEN T, ulong

p)
▶ GEN FlxqXQ_mul_pre(GEN x, GEN y, GEN S, GEN T,

ulong p, ulong pi)
▶ GEN F2xqXQ_mul(GEN x, GEN y, GEN S, GEN T)



Low-level libpari functions for finite fields

Precomputed inverse for FpXQXQ

To speed up modular reduction, it is possible to replace S by a
precomputed inverse, by doing S = FpXQX_get_red(S, T, p);
which accepted as a remplacement for S by FpXQX_rem. However,
as a consequence, when implementing new FpXQXQ functions, S
should not be accessed directly. The following accessors are
provided
▶ get_FpXQX_degree(S): return the degree of the original S.
▶ get_FpXQX_var(S): return the variable number of the

original S.
▶ get_FpXQX_mod(S): (rarely needed) return the original S.



Low-level libpari functions for finite fields

Precomputed inverse for FlxqXQ

To speed up modular reduction, it is possible to replace S by a
precomputed inverse, by doing S = FlxqX_get_red(S, T, p);
or S = FlxqX_get_red_pre(S, T, p, pi); which accepted as
a remplacement for S by FlxqX_rem and FlxqX_rem_pre.
However, as a consequence, when implementing new FlxqXQ
functions, S should not be accessed directly. The following
accessors are provided
▶ get_FlxqX_degree(S): return the degree of the original S.
▶ get_FlxqX_var(S): return the variable number of the

original S.
▶ get_FlxqX_mod(S): (rarely needed) return the original S.



Low-level libpari functions for finite fields

Precomputed inverse for F2xqXQ

To speed up modular reduction, it is possible to replace S by a
precomputed inverse, by doing S = F2xqX_get_red(S, T);
which accepted as a remplacement for S by F2xqX_rem. However,
as a consequence, when implementing new F2xqXQ functions, S
should not be accessed directly. The following accessors are
provided
▶ get_F2xqX_degree(S): return the degree of the original S.
▶ get_F2xqX_var(S): return the variable number of the

original S.
▶ get_F2xqX_mod(S): (rarely needed) return the original S.



Low-level libpari functions for finite fields

Families FpE/Fle/FpXQE/FlxqE/F2xqE
FpE/FpXQE/FlxqE/F2xqE are t_VEC with 2 components denoting
affine points over an elliptic curve over Fp in short Weierstrass
form y2 = x3 + a4x + a6 (in char. 2 and 3 different forms are
used). Fle are t_VECSMALL with 2 component. In both cases the
point at infinity is ellinf (use ell_is_inf(P) to test for it).
Given a finite point on the curve, the curve is determined by a4.
▶ GEN FpE_add(GEN P, GEN Q, GEN a4, GEN p)
▶ GEN Fle_dbl(GEN P, ulong a4, ulong p)
▶ GEN FpXQE_order(GEN P, GEN Q, GEN o, GEN a4, GEN

p)
▶ GEN FlxqE_weilpairing(GEN P, GEN Q, GEN m, GEN

a4, ulong p)
▶ GEN F2xqE_tatepairing(GEN P, GEN Q, GEN m, GEN

a2, GEN T)



Low-level libpari functions for finite fields

FF/FFX/FFM/FFE functions

The type t_FFELT is a wrapper around FpXQ/Flxq/F2xq objects
in the file src/basemath/FF.c, the FF functions are build by
applying the corresponding FpXQ/Flxq/F2xq function on the
underlying objects, the FFX functions are build by applying the
corresponding FpXQX/FlxqX/F2xqX, the FFM functions are build
by applying the corresponding FpXQM/FlxqM/F2xqM, and the FFE
functions are build by applying the corresponding
FpXQE/FlxqE/F2xqE.



Low-level libpari functions for finite fields

Example: FF_mul

GEN
FF_mul(GEN x, GEN y)
{

ulong pp;
GEN r, T, p, z=_initFF(x,&T,&p,&pp);
pari_sp av=avma;
_checkFF(x,y,"*");
switch(x[1])
{
case t_FF_FpXQ:

r=FpXQ_mul(gel(x,2),gel(y,2),T,p);
break;



Low-level libpari functions for finite fields

case t_FF_F2xq:
r=F2xq_mul(gel(x,2),gel(y,2),T);
break;

default:
r=Flxq_mul(gel(x,2),gel(y,2),T,pp);

}
return _mkFF(x,z,gc_upto(av, r));

}



Low-level libpari functions for finite fields

Function family Rg
Rg is the set of GP objects under GP operations +,-,*,/,% etc.
There is an expectation that Rg does not include components of
type t_LIST, t_STR, t_VECSMALL, t_CLOSURE, t_ERROR and
t_INFINITY.
It is not associative nor commutative even modulo == (gequal).
The name of the operations in C are gadd, gsub, gmul, gdiv,
grem.
▶ int Rg_is_Fp(GEN x, GEN *pp) checks whether x can be

converted to a Fp (modulo *pp if *pp is not NULL). If yes, set
*pp to p if p can be determined.

▶ int Rg_is_FpXQ(GEN x, GEN *pT, GEN *pp) checks
whether x can be converted to a FpXQ (modulo *pT,*pp if
*pT,*pp are not NULL). If yes, set *pT to T and *pp to p if
they can be determined.



Low-level libpari functions for finite fields

Conversion from Rg
▶ GEN Rg_to_Fp(GEN x, GEN p) convert x to a (t_INT) Fp

(modulo p).
▶ ulong Rg_to_Fl(GEN x, ulong p) convert x to a Fl

(modulo p).
▶ ulong Rg_to_F2(GEN x) convert x to 0 or 1 (modulo 2).
▶ ulong Rg_to_FpXQ(GEN x, GEN T, GEN p) convert x to a

FpXQ (modulo T , p).
▶ ulong Rg_to_Fq(GEN x, GEN T, GEN p) convert x to a Fq

(modulo T , p if T is not NULL, modulo p otherwise).
▶ ulong Rg_to_Flxq(GEN x, GEN T, ulong p) convert x to

a Flxq (modulo T , p).
▶ GEN Rg_to_F2xq(GEN x, GEN T) convert x to a F2xq

(modulo T).



Low-level libpari functions for finite fields

Function family RgC/RgV/RgM

RgC denotes t_COL, RgV denotes t_VEC and RgM denotes t_MAT.
Examples:
▶ GEN RgV_dotproduct(GEN x)
▶ GEN RgM_RgC_mul(GEN x, GEN y)
▶ GEN RgM_mul(GEN x, GEN y)
▶ GEN RgM_inv(GEN x)



Low-level libpari functions for finite fields

Conversions

▶ GEN RgC_to_FpC(GEN x, GEN p)
▶ GEN RgC_to_FqC(GEN x, GEN T, GEN p)
▶ GEN RgV_to_FpV(GEN x, GEN p)
▶ GEN RgV_to_FqV(GEN x, GEN T, GEN p)
▶ GEN RgV_to_Flv(GEN x, ulong p)
▶ GEN RgV_to_F2v(GEN x)
▶ GEN RgM_to_FpM(GEN x, GEN p)
▶ GEN RgM_to_FqM(GEN x, GEN T, GEN p)
▶ GEN RgM_to_Flm(GEN x, ulong p)
▶ GEN RgM_to_F2m(GEN x)



Low-level libpari functions for finite fields

Function family RgX

RgX denotes t_POL objects.
Identification functions:
▶ int RgX_is_ZX(GEN x) returns 1 if x is a ZX, 0 otherwise.
▶ int RgX_is_FpX(GEN x, GEN *pp) checks whether x can

be converted to a FpX (modulo *pp if *pp is not NULL). If
yes, set *pp to p if p can be determined.

▶ int RgX_is_FpXQ(GEN x, GEN *pT, GEN *pp) checks
whether x can be converted to a FpXQX (modulo *pT,*pp if
*pT,*pp are not NULL). If yes, set *pT to T and *pp to p if
they can be determined.



Low-level libpari functions for finite fields

Conversions

▶ GEN RgX_to_FpX(GEN x, GEN p)
▶ GEN RgX_to_Flx(GEN x, ulong p)
▶ GEN RgX_to_F2x(GEN x)
▶ GEN RgX_to_FpXQX(GEN x, GEN T, GEN p)
▶ GEN RgX_to_FqX(GEN x, GEN T, GEN p)
▶ GEN RgX_to_FlxqX(GEN x, GEN T, ulong p)


