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Finding C functions
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Finding the C function you need

Here are some methods to find the C function you are looking for:
▶ guessing the name (cf. the API tutorial);
▶ from the libpari documentation (libpari.dvi);
▶ from the GP documentation (users.dvi);
▶ reading the code of functions that you guess should use it.



Interaction between Libpari and GP

Navigating the C code

Using tags you can:
▶ jump to the definition of a function by typing its name

(vi -t <name> or :ta <name> with vi);
▶ idem from its appearance in the code

(Ctrl+] to jump, Ctrl+T to go back with vi).
This allows you to efficiently navigate the code without knowing
which function is defined in which file.
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Writing documentation
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GP functions documentation
GP functions should be documented in its installation file
src/functions/<section>/<function>. The fields are:
▶ Function: name of the GP function.
▶ Section: section of the documentation.
▶ C-Name: name of the C function.
▶ Prototype: cf. next slide.
▶ Help: short help, in plain text.
▶ Doc: long help, in tex.
▶ (optional) Variant: related C functions.
▶ (optional) Description/Wrapper: GP2C related.

Lines not starting by one of these keywords should start with a
space.
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GP functions documentation

Each section of the documentation of GP functions (Chapter 3)
starts by the paragraph src/functions/<section>/HEADER
(written in tex).

The file doc/usersch3.tex is generated from the content of
src/functions/ and from doc/usersFUNCS.tex, and should
never be modified directly.

Public C functions (i.e. declared in paridecl.h) should be
documented in usersch*.tex. If you want you function to be
private, declare it in paripriv.h (to be used in other by PARI C
files) or make it static.
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Basic prototypes
Input types:
▶ G: GEN
▶ &: GEN*
▶ L: long
▶ n: variable (becomes a long in C)
▶ D?: optional ?∈ {G,&}, NULL if absent

Return type:
▶ nothing: GEN
▶ l: long
▶ i: int
▶ v: void
▶ m: unsafe GEN

(more in Section 5.8.3 of the libpari doc)
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Examples

long issquareall(GEN x, GEN *pt) -> lGD&

GEN minpoly(GEN x, long v) -> GDn
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Tex macros
In the tex parts of the documentations, the following macros are
available:
▶ \Z, \Q, \R, \C
▶ \kbd{}, \tet{}

for texttt, but tet creates an entry in the index.
▶ \typ{}

for GEN types.
▶ \bprog ... @eprog

for GP code examples (include examples in your doc!).
▶ \fl

for flags.
▶ \fun{return type}{name}{arguments}

to describe C function prototypes.



Interaction between Libpari and GP

Refcards

Do not forget to add your function to doc/refcard-*.tex!

▶ Not necessarily with all the optional arguments.
▶ Same function can appear twice for argument variants.
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Testing documentation examples

GP has a special mode to test documentation examples, the
doctest default:

\z

This makes GP delete the initial ? and ignore the %n = lines.
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C functions and GP
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Naming

Try to use the same name for the GP function and the
corresponding C function.

Typical counterexample: we want to add an optional argument to
an existing function fun. This is backwards compatible in GP, but
not in C. Usually, we preserve the C function fun and create a new
C function fun0 that corresponds to the GP function fun.
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Output sanity

Make sure that the output of your function is suitable for
gc_upto. This is easy to ensure by a call to gc_GEN. Beware of
unclean constructors such as mkvec and friends!
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Input checking

Add simple and cheap argument checks to your functions:
▶ type (typ) and length (lg), usually not recursively (maybe

one level).
▶ validity of the input, if cheap compared to the cost of the

function.
You may document the behaviour as undefined when preconditions
are not met.
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Precision

Function returning real or complex numbers have a precision
argument. This argument is not provided by the user, but the
default realbitprecision is used.
▶ In C, this is long prec, in bits.
▶ Prototype: p (rounded up to a multiple of BITS_IN_LONG) or

b (bitprecision).

The semantic is:
▶ if the input is exact, return the output at the given precision;
▶ if the input is inexact, return the output at the highest

possible precision given the input.
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Variables

Usually, when you need variables in C code, the variable is provided
by the user. If you need to create a temporary variable, use
fetch_var_higher to create a variable with higher priority that
all existing ones, and do not forget to delete_var so as not to
leak variables!
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Install

While developping, it is often useful to install C functions to test
them under GP.
▶ Basic use: install(name,prototype);
▶ Remove the static keyword and recompile gp if necessary.
▶ The m prototype is useful for unclean functions.
▶ Functions that can return NULL can be handled with Bill’s

isNULL trick:
isNULL(z=NULL)=z;

Then isNULL(fun(x)) will return NULL (a GP variable) if
fun(x)=NULL (the C NULL pointer) and fun(x) otherwise.
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Writing tests
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Test suite

Running a test with make test-foo consists in feeding gp with
the content of src/test/in/foo and computing a diff with the
expected output src/test/32/foo (excluding the timing from the
diff), resulting in a diff file Oxxx/foo-sta.dif or
Oxxx/foo-dyn.dif. The test is considered passed if the diff is
empty.
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Running tests faster

To save time when running tests, it is convenient to only run the
sta suite (statically linked, faster than the dynamically linked one),
and only a subset of the tests with:

make TESTS="foo1 foo2 ..." statest-all

or

make dotestSUF=sta test-foo1 test-foo2 ...
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Patching

Procedure for adding tests:
1. Add a test to the test file foo (or create it).
2. If you created the file, do ./Configure -l.
3. Run make test-foo.
4. Check whether Oxxx/foo-sta.dif is what you expected.
5. Update the output file with patch -p1 Oxxx/foo-sta.dif

(only if the output is correct!).
6. Don’t forget to add src/test/32/foo to your commit!
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Tests guidelines
▶ No install() in tests (not portable enough).
▶ Also test bad inputs and inputs that trigger an error.
▶ Try to write stable tests, i.e. tests that do not depend on the

least significant bits of approximate computations, on a choice
of basis, on 32 vs 64 bits architecture.

▶ Use setrand before tests that use a probabilistic algorithm
(especially if the output is not unique), so that adding tests to
the file does not break your test.

▶ Try to write test that do not use a lot of stack. parisizemax
is disallowed in tests; you may change parisize but keep it
reasonable.

▶ Write tests that take only a few seconds (in 64 bits), at most
one minute. Split your test file if necessary.
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Testing in 32 bits

To run your test in 32 bits (much slower), you need the following
packages:

sudo apt install gcc-multilib lib32readline-dev

Then compile and run with:

CFLAGS=-m32 linux32 ./Configure
linux32 make gp
linux32 make test-foo

Your diff files will be in something like Olinux-i686/.
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Thank you!

Have fun with Pari!


