
Interaction between Libpari and GP

Interaction between Libpari and GP

A. Page

IMB
CNRS/Université de Bordeaux

25/06/2025



Interaction between Libpari and GP

Plan

1. Finding C functions
2. Writing documentation
3. C functions and GP
4. Writing tests



Interaction between Libpari and GP

Finding C functions



Interaction between Libpari and GP

Finding the C function you need

Here are some methods to find the C function you are looking for:
▶ guessing the name (cf. the API tutorial);
▶ from the libpari documentation (libpari.dvi);
▶ from the GP documentation (users.dvi);
▶ reading the code of functions that you guess should use it.



Interaction between Libpari and GP

Navigating the C code

Using tags you can:
▶ jump to the definition of a function by typing its name

(vi -t <name> or :ta <name> with vi);
▶ idem from its appearance in the code

(Ctrl+] to jump, Ctrl+T to go back with vi).
This allows you to efficiently navigate the code without knowing
which function is defined in which file.



Interaction between Libpari and GP

Writing documentation



Interaction between Libpari and GP

GP functions documentation
GP functions should be documented in its installation file
src/functions/<section>/<function>. The fields are:
▶ Function: name of the GP function.
▶ Section: section of the documentation.
▶ C-Name: name of the C function.
▶ Prototype: cf. next slide.
▶ Help: short help, in plain text.
▶ Doc: long help, in tex.
▶ (optional) Variant: related C functions.
▶ (optional) Description/Wrapper: GP2C related.

Lines not starting by one of these keywords should start with a
space.



Interaction between Libpari and GP

GP functions documentation

Each section of the documentation of GP functions (Chapter 3)
starts by the paragraph src/functions/<section>/HEADER
(written in tex).

The file doc/usersch3.tex is generated from the content of
src/functions/ and from doc/usersFUNCS.tex, and should
never be modified directly.

Public C functions (i.e. declared in paridecl.h) should be
documented in usersch*.tex. If you want you function to be
private, declare it in paripriv.h (to be used in other by PARI C
files) or make it static.



Interaction between Libpari and GP

Basic prototypes
Input types:
▶ G: GEN
▶ &: GEN*
▶ L: long
▶ n: variable (becomes a long in C)
▶ D?: optional ?∈ {G,&}, NULL if absent

Return type:
▶ nothing: GEN
▶ l: long
▶ i: int
▶ v: void
▶ m: unsafe GEN

(more in Section 5.8.3 of the libpari doc)



Interaction between Libpari and GP

Examples

long issquareall(GEN x, GEN *pt) -> lGD&

GEN minpoly(GEN x, long v) -> GDn



Interaction between Libpari and GP

Tex macros
In the tex parts of the documentations, the following macros are
available:
▶ \Z, \Q, \R, \C
▶ \kbd{}, \tet{}

for texttt, but tet creates an entry in the index.
▶ \typ{}

for GEN types.
▶ \bprog ... @eprog

for GP code examples (include examples in your doc!).
▶ \fl

for flags.
▶ \fun{return type}{name}{arguments}

to describe C function prototypes.



Interaction between Libpari and GP

Refcards

Do not forget to add your function to doc/refcard-*.tex!

▶ Not necessarily with all the optional arguments.
▶ Same function can appear twice for argument variants.



Interaction between Libpari and GP

Testing documentation examples

GP has a special mode to test documentation examples, the
doctest default:

\z

This makes GP delete the initial ? and ignore the %n = lines.



Interaction between Libpari and GP

C functions and GP



Interaction between Libpari and GP

Naming

Try to use the same name for the GP function and the
corresponding C function.

Typical counterexample: we want to add an optional argument to
an existing function fun. This is backwards compatible in GP, but
not in C. Usually, we preserve the C function fun and create a new
C function fun0 that corresponds to the GP function fun.



Interaction between Libpari and GP

Output sanity

Make sure that the output of your function is suitable for
gc_upto. This is easy to ensure by a call to gc_GEN. Beware of
unclean constructors such as mkvec and friends!



Interaction between Libpari and GP

Input checking

Add simple and cheap argument checks to your functions:
▶ type (typ) and length (lg), usually not recursively (maybe

one level).
▶ validity of the input, if cheap compared to the cost of the

function.
You may document the behaviour as undefined when preconditions
are not met.



Interaction between Libpari and GP

Precision

Function returning real or complex numbers have a precision
argument. This argument is not provided by the user, but the
default realbitprecision is used.
▶ In C, this is long prec, in bits.
▶ Prototype: p (rounded up to a multiple of BITS_IN_LONG) or

b (bitprecision).

The semantic is:
▶ if the input is exact, return the output at the given precision;
▶ if the input is inexact, return the output at the highest

possible precision given the input.



Interaction between Libpari and GP

Variables

Usually, when you need variables in C code, the variable is provided
by the user. If you need to create a temporary variable, use
fetch_var_higher to create a variable with higher priority that
all existing ones, and do not forget to delete_var so as not to
leak variables!



Interaction between Libpari and GP

Install

While developping, it is often useful to install C functions to test
them under GP.
▶ Basic use: install(name,prototype);
▶ Remove the static keyword and recompile gp if necessary.
▶ The m prototype is useful for unclean functions.
▶ Functions that can return NULL can be handled with Bill’s

isNULL trick:
isNULL(z=NULL)=z;

Then isNULL(fun(x)) will return NULL (a GP variable) if
fun(x)=NULL (the C NULL pointer) and fun(x) otherwise.



Interaction between Libpari and GP

Writing tests



Interaction between Libpari and GP

Test suite

Running a test with make test-foo consists in feeding gp with
the content of src/test/in/foo and computing a diff with the
expected output src/test/32/foo (excluding the timing from the
diff), resulting in a diff file Oxxx/foo-sta.dif or
Oxxx/foo-dyn.dif. The test is considered passed if the diff is
empty.



Interaction between Libpari and GP

Running tests faster

To save time when running tests, it is convenient to only run the
sta suite (statically linked, faster than the dynamically linked one),
and only a subset of the tests with:

make TESTS="foo1 foo2 ..." statest-all

or

make dotestSUF=sta test-foo1 test-foo2 ...



Interaction between Libpari and GP

Patching

Procedure for adding tests:
1. Add a test to the test file foo (or create it).
2. If you created the file, do ./Configure -l.
3. Run make test-foo.
4. Check whether Oxxx/foo-sta.dif is what you expected.
5. Update the output file with patch -p1 Oxxx/foo-sta.dif

(only if the output is correct!).
6. Don’t forget to add src/test/32/foo to your commit!



Interaction between Libpari and GP

Tests guidelines
▶ No install() in tests (not portable enough).
▶ Also test bad inputs and inputs that trigger an error.
▶ Try to write stable tests, i.e. tests that do not depend on the

least significant bits of approximate computations, on a choice
of basis, on 32 vs 64 bits architecture.

▶ Use setrand before tests that use a probabilistic algorithm
(especially if the output is not unique), so that adding tests to
the file does not break your test.

▶ Try to write test that do not use a lot of stack. parisizemax
is disallowed in tests; you may change parisize but keep it
reasonable.

▶ Write tests that take only a few seconds (in 64 bits), at most
one minute. Split your test file if necessary.



Interaction between Libpari and GP

Testing in 32 bits

To run your test in 32 bits (much slower), you need the following
packages:

sudo apt install gcc-multilib lib32readline-dev

Then compile and run with:

CFLAGS=-m32 linux32 ./Configure
linux32 make gp
linux32 make test-foo

Your diff files will be in something like Olinux-i686/.



Interaction between Libpari and GP

Thank you!

Have fun with Pari!


