Atelier PARI

Modular parametrization

Christophe Delaunay

Laboratoire de Mathématiques de Besançon

 $(\mathrm{Lm}^{\mathrm{B}})$

18 janvier 2013

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

 $\varphi : X_0(N) \longrightarrow E$ \rhd It is (nearly) explicit $\varphi : X_0(N)(\mathbb{C}) \longrightarrow \mathbb{C}/\Lambda$ -

 $\tau \in \mathbb{H} \qquad \longmapsto \quad z = c \sum_{n \geq 1} \frac{a(n)}{n} e^{2i\pi n\tau} \quad \longmapsto \quad (\wp(z), \wp'(z))$

where :

• $L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$ is the *L*-function associated to *E*;

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

 $\varphi: X_0(N) \longrightarrow E$

⊳ It is (nearly) explicit

 $\varphi : \quad X_0(N)(\mathbb{C}) \quad \longrightarrow \qquad \mathbb{C}/\Lambda \qquad \longrightarrow \qquad E(\mathbb{C})$

 $au \in \mathbb{H} \qquad \longmapsto \quad z = c \sum_{n \ge 1} \frac{a(n)}{n} e^{2i\pi n\tau} \quad \longmapsto \quad (\wp(z), \wp'(z))$

where :

• $L(E,s) = \sum_{n\geq 1} rac{a(n)}{n^s}$ is the *L*-function associated to E_i

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

$$\varphi: X_0(N) \longrightarrow E$$

> It is (nearly) explicit

 $\varphi \colon X_0(N)(\mathbb{C}) \longrightarrow \mathbb{C}/\Lambda \longrightarrow E(\mathbb{C})$

 $au \in \mathbb{H}$ \longrightarrow $a = c \sum_{n \geq 1} c^{2(n+1)} c^{2(n+1)} \longrightarrow$ (a(a), b) (a))

where :

 $L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$ is the *L*-function associated to *E*;

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

$$\varphi: X_0(N) \longrightarrow E$$

▷ It is (nearly) explicit

where :

• $L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$ is the *L*-function associated to *E*;

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

$$\varphi: X_0(N) \longrightarrow E$$

▷ It is (nearly) explicit

where :

• $L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$ is the *L*-function associated to *E*;

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

$$\varphi: X_0(N) \longrightarrow E$$

▷ It is (nearly) explicit

where :

•
$$L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$$
 is the *L*-function associated to *E*;

• c is Manin's constant of E.

Let *E* be an elliptic curve defined over \mathbb{Q} with conductor *N*.

> There exists a map

$$\varphi: X_0(N) \longrightarrow E$$

▷ It is (nearly) explicit

where :

•
$$L(E,s) = \sum_{n \ge 1} \frac{a(n)}{n^s}$$
 is the *L*-function associated to *E*;

• c is Manin's constant of E.

- It is a natural invariant attached to E;
- the primes dividing $\deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.
- ...

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$ $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7$

Conjecture (M. Watkins

- It is a natural invariant attached to E;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.

• ...

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$ $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7$

Conjecture (M. Watkins

- It is a natural invariant attached to *E*;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.

. . . .

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$

 $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7.$

Conjecture (M. Watkins

- It is a natural invariant attached to *E*;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$

 $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7.$

Conjecture (M. Watkins

- It is a natural invariant attached to *E*;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of *f* the weight 2 modular form associated to *E*.
- ...

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$

 $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7.$

Conjecture (M. Watkins

- It is a natural invariant attached to *E*;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of *f* the weight 2 modular form associated to *E*.
- ...

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$

 $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7.$

Conjecture (M. Watkins

- It is a natural invariant attached to *E*;
- the primes dividing $deg(\varphi)$ have certain properties;
- the growth of $deg(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of *f* the weight 2 modular form associated to *E*.
- ...

Example. $E: y^2 = x^3 + 11x + 13, N = 39548.$

 $\deg(\varphi) = 5376 = 2^8 \times 3 \times 7.$

Conjecture (M. Watkins)

 \triangleright If E_d is a quadratic twist of E, $\deg(\varphi_E)$ and $\deg(\varphi_{E_d})$ are related.

- ightarrow Assume E is "minimal" among all its twists (conductor and disc.). ightarrow Compute this minimal curve.
- We use (Theorem of Zagier)

$$\deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2})$$

where

$$L(\operatorname{sym}^2 E, s) = \frac{\zeta_N(2s-2)}{\zeta_N(s-1)} \left(\sum_n \frac{a(n)^2}{n^s} \right) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-s})^{-1}, \Re(s) > 2.$$

 \triangleright If E_d is a quadratic twist of E, $\deg(\varphi_E)$ and $\deg(\varphi_{E_d})$ are related.

 \rightarrow Assume *E* is "minimal" among all its twists (conductor and disc.). \rightarrow Compute this minimal curve.

We use (Theorem of Zagier)

$$\deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2})$$

where

$$L(\operatorname{sym}^2 E, s) = \frac{\zeta_N(2s-2)}{\zeta_N(s-1)} \left(\sum_n \frac{a(n)^2}{n^s} \right) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-s})^{-1}, \Re(s) > 2.$$

- \triangleright If E_d is a quadratic twist of E, $\deg(\varphi_E)$ and $\deg(\varphi_{E_d})$ are related.
- \rightarrow Assume *E* is "minimal" among all its twists (conductor and disc.).
- \rightarrow Compute this minimal curve.

 $\mathrm{deg}(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\mathrm{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\mathrm{sym}^2 E, p^{-2})$

where

$$L(\operatorname{sym}^2 E, s) = \frac{\zeta_N(2s-2)}{\zeta_N(s-1)} \left(\sum_n \frac{a(n)^2}{n^s} \right) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-s})^{-1}, \Re(s) > 2.$$

 \triangleright If E_d is a quadratic twist of E, $\deg(\varphi_E)$ and $\deg(\varphi_{E_d})$ are related.

- \rightarrow Assume *E* is "minimal" among all its twists (conductor and disc.).
- \rightarrow Compute this minimal curve.
- ▷ We use (Theorem of Zagier)

$$\deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2})$$

where

$$L(\operatorname{sym}^{2} E, s) = \frac{\zeta_{N}(2s-2)}{\zeta_{N}(s-1)} \left(\sum_{n} \frac{a(n)^{2}}{n^{s}} \right) \prod_{p^{2}|N} L_{p}(\operatorname{sym}^{2} E, p^{-s})^{-1}, \Re(s) > 2.$$

 \triangleright If E_d is a quadratic twist of E, $\deg(\varphi_E)$ and $\deg(\varphi_{E_d})$ are related.

- \rightarrow Assume *E* is "minimal" among all its twists (conductor and disc.).
- \rightarrow Compute this minimal curve.
- ▷ We use (Theorem of Zagier)

$$\deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2})$$

where

$$L(\operatorname{sym}^{2} E, s) = \frac{\zeta_{N}(2s-2)}{\zeta_{N}(s-1)} \left(\sum_{n} \frac{a(n)^{2}}{n^{s}} \right) \prod_{p^{2}|N} L_{p}(\operatorname{sym}^{2} E, p^{-s})^{-1}, \Re(s) > 2.$$

\triangleright If $p \nmid N$ or $p \mid N$ then

 $\operatorname{val}_p(B) = \operatorname{val}_p(N)$ and $L_p(\operatorname{sym}^2 E, X) = (1 - \alpha_p^2 X)(1 - \alpha_p \beta_p X)(1 - \beta_p^2 X)$ where α_p and β_p are the roots of $X^2 - a(p)X + p$.

 \triangleright If $p^2|N$, then $L_p(\operatorname{sym}^2 E, X) = 1 + \varepsilon pX$ with $\varepsilon = -1, 0, +1$.

For example, thanks to M. Watkins: if

 $p \equiv 1 \mod 12$) or $p \equiv 5 \mod 12$ and $p^2 \mid c_0$ and $p^2 \nmid c_1$ or $p \equiv 7 \mod 12$ and $p^2 \nmid c_0$ or $p^2 \mid c_0$ and $p^2 \mid c_1$

then $\varepsilon = -1$ and $\operatorname{val}_p(B) = 1$.

 \triangleright If $p \nmid N$ or p || N then

 $\operatorname{val}_p(B) = \operatorname{val}_p(N)$ and $L_p(\operatorname{sym}^2 E, X) = (1 - \alpha_p^2 X)(1 - \alpha_p \beta_p X)(1 - \beta_p^2 X)$ where α_p and β_p are the roots of $X^2 - a(p)X + p$.

\triangleright If $p^2|N$, then $L_p(\operatorname{sym}^2 E, X) = 1 + \varepsilon pX$ with $\varepsilon = -1, 0, +1$.

For example, thanks to M. Watkins: if

 $p \equiv 1 \mod 12$) or $p \equiv 5 \mod 12$ and $p^2 \mid c_0$ and $p^2 \mid c_1$ or $p \equiv 7 \mod 12$ and $p^2 \mid c_6$ or $p^2 \mid c_6$ and $p^2 \mid c_1$

then $\varepsilon = -1$ and $\operatorname{val}_p(B) = 1$.

 \triangleright If $p \nmid N$ or p || N then

 $\operatorname{val}_p(B) = \operatorname{val}_p(N)$ and $L_p(\operatorname{sym}^2 E, X) = (1 - \alpha_p^2 X)(1 - \alpha_p \beta_p X)(1 - \beta_p^2 X)$ where α_p and β_p are the roots of $X^2 - a(p)X + p$.

 \triangleright If $p^2|N$, then $L_p(\operatorname{sym}^2 E, X) = 1 + \varepsilon pX$ with $\varepsilon = -1, 0, +1$.

For example, thanks to M. Watkins: if

 $p \equiv 1 \mod 12$) or $p \equiv 5 \mod 12$ and $p^2 \mid c_0$ and $p^2 \nmid c_1$ or $p \equiv 7 \mod 12$ and $p^2 \nmid c_0$ or $p^2 \mid c_0$ and $p^2 \mid c_1$

then $\varepsilon = -1$ and $\operatorname{val}_p(B) = 1$.

 \triangleright If $p \nmid N$ or p || N then

 $\operatorname{val}_p(B) = \operatorname{val}_p(N)$ and $L_p(\operatorname{sym}^2 E, X) = (1 - \alpha_p^2 X)(1 - \alpha_p \beta_p X)(1 - \beta_p^2 X)$ where α_p and β_p are the roots of $X^2 - a(p)X + p$.

 \triangleright If $p^2|N$, then $L_p(\operatorname{sym}^2 E, X) = 1 + \varepsilon pX$ with $\varepsilon = -1, 0, +1$.

For example, thanks to M. Watkins: if

 $p \equiv 1 \mod 12) \qquad \text{or}$ $p \equiv 5 \mod 12 \text{ and } p^2 \mid c_6 \text{ and } p^2 \nmid c_4 \qquad \text{or}$ $p \equiv 7 \mod 12 \text{ and } p^2 \nmid c_6 \text{ or } p^2 \mid c_6 \text{ and } p^2 \mid c_4$

then $\varepsilon = -1$ and $\operatorname{val}_p(B) = 1$.

 \triangleright If $p \nmid N$ or p || N then

 $\operatorname{val}_p(B) = \operatorname{val}_p(N)$ and $L_p(\operatorname{sym}^2 E, X) = (1 - \alpha_p^2 X)(1 - \alpha_p \beta_p X)(1 - \beta_p^2 X)$ where α_p and β_p are the roots of $X^2 - a(p)X + p$.

 \triangleright If $p^2|N$, then $L_p(\operatorname{sym}^2 E, X) = 1 + \varepsilon pX$ with $\varepsilon = -1, 0, +1$.

For example, thanks to M. Watkins: if

 $p \equiv 1 \mod{12} \qquad \text{or}$ $p \equiv 5 \mod{12} \text{ and } p^2 \mid c_6 \text{ and } p^2 \nmid c_4 \qquad \text{or}$ $p \equiv 7 \mod{12} \text{ and } p^2 \nmid c_6 \text{ or } p^2 \mid c_6 \text{ and } p^2 \mid c_4$

then $\varepsilon = -1$ and $\operatorname{val}_p(B) = 1$.

The primitive square *L*-function

Theorem (Coates-Schmidt)

The function $L(\text{sym}^2 E, s)$ has a holomorphic continuation to the whole complex plane and the function:

$$\Lambda(\operatorname{sym}^2 E, s) = \left(\frac{B}{2\pi^{3/2}}\right)^s \Gamma(s)\Gamma(s/2)L(\operatorname{sym}^2 E, s)$$

is entire and satisfies the functional equation

$$\Lambda(\operatorname{sym}^2 E, s) = \Lambda(\operatorname{sym}^2 E, 3 - s).$$

ightarrow Just have to compute $\Lambda(\mathrm{sym}^2\,E,2)$ using the classical machinery.

Remarks.

We have $L(\operatorname{sym}^2 E, s) = L(\operatorname{sym}^2 E_d, s)$.

 $L(\operatorname{sym}^2 E,s) = \sum rac{b(n)}{n^s}$ then $\sum_n rac{b(n)}{n^2}$ is (slowly) converging.

The primitive square *L*-function

Theorem (Coates-Schmidt)

The function $L(\text{sym}^2 E, s)$ has a holomorphic continuation to the whole complex plane and the function:

$$\Lambda(\operatorname{sym}^2 E, s) = \left(\frac{B}{2\pi^{3/2}}\right)^s \Gamma(s)\Gamma(s/2)L(\operatorname{sym}^2 E, s)$$

is entire and satisfies the functional equation

$$\Lambda(\operatorname{sym}^2 E, s) = \Lambda(\operatorname{sym}^2 E, 3 - s).$$

ightarrow Just have to compute $\Lambda(\mathrm{sym}^2\,E,2)$ using the classical machinery.

Remarks.

We have $L(\operatorname{sym}^2 E, s) = L(\operatorname{sym}^2 E_d, s).$

 $L(\operatorname{sym}^2 E,s) = \sum rac{b(n)}{n^s}$ then $\sum_n rac{b(n)}{n^2}$ is (slowly) converging.

The primitive square *L*-function

Theorem (Coates-Schmidt)

The function $L(\text{sym}^2 E, s)$ has a holomorphic continuation to the whole complex plane and the function:

$$\Lambda(\operatorname{sym}^2 E, s) = \left(\frac{B}{2\pi^{3/2}}\right)^s \Gamma(s)\Gamma(s/2)L(\operatorname{sym}^2 E, s)$$

is entire and satisfies the functional equation

$$\Lambda(\operatorname{sym}^2 E, s) = \Lambda(\operatorname{sym}^2 E, 3 - s).$$

 \rightarrow Just have to compute $\Lambda(\operatorname{sym}^2 E, 2)$ using the classical machinery.

Remarks.

We have $L(\operatorname{sym}^2 E, s) = L(\operatorname{sym}^2 E_d, s)$.

If $L(\operatorname{sym}^2 E, s) = \sum \frac{b(n)}{n^s}$ then $\sum_n \frac{b(n)}{n^2}$ is (slowly) converging.

Computing $\Lambda(\operatorname{sym}^2 E, s) = \gamma(s)L(\operatorname{sym}^2 E, s)$

We have

$$\Lambda(\operatorname{sym}^{2} E, s) = \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n) + \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n) + \operatorname{Error},$$

where

$$F(s,x) = \gamma(s) - \int_0^x \frac{1}{2i\pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) dz dt.$$

And

$$|F(s,x)| \le 7 \frac{x^{\Im(s)}}{A - \Re(s)A^{1/3}} e^{3/2A^{3/3}}$$

for $A = \frac{2^{3/4} \pi^{3/2} x}{B}$.

ightarrow Useful for computing N_0 in function of the Error.

Computing $\Lambda(\operatorname{sym}^2 E, s) = \gamma(s)L(\operatorname{sym}^2 E, s)$

We have

$$\Lambda(\operatorname{sym}^{2} E, s) = \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n) + \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n) + \operatorname{Error},$$

where

$$F(s,x) = \gamma(s) - \int_0^x \frac{1}{2i\pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) dz dt.$$

And

$$|F(s,x)| \le 7 \frac{x^{\Re(s)}}{A - \Re(s)A^{1/3}} e^{3/2A^{2/3}}$$

for $A = \frac{2^{3/4} \pi^{3/2} x}{B}$.

ightarrow Useful for computing N_0 in function of the Error.

Computing $\Lambda(\operatorname{sym}^2 E, s) = \gamma(s)L(\operatorname{sym}^2 E, s)$

We have

$$\Lambda(\operatorname{sym}^{2} E, s) = \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n) + \sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n) + \operatorname{Error},$$

where

$$F(s,x) = \gamma(s) - \int_0^x \frac{1}{2i\pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) dz dt.$$

And

$$|F(s,x)| \le 7 \frac{x^{\Re(s)}}{A - \Re(s)A^{1/3}} e^{3/2A^{2/3}}$$

for $A = \frac{2^{3/4} \pi^{3/2} x}{B}$.

 \rightarrow Useful for computing N_0 in function of the *Error*.

Computing F(s, x)

We have

$$F(s,x) = \gamma(s) - \sum_{q \ge 0}^{i_0} x^{s+2q} \left(\frac{v_{2q} - u_{2q} \log(x)}{s+2q} + \frac{u_{2q}}{(s+2q)^2} + \frac{xu_{2q+1}}{s+2q+1} \right),$$

with

$$u_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!};$$

$$u_{2q+1} = \frac{(-1)^{q}\sqrt{\pi}2^{2q+1}q!}{(2q+1)!^{2}C^{2q+1}};$$

$$v_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!} \left(\log(C) - \frac{3}{2}\gamma \frac{1}{2}\sum_{j=1}^{q}j^{-1} + \sum_{j=1}^{2q}j^{-1}\right).$$

Where $C = \frac{B}{2\pi^{3/2}}$.

 \triangleright Need to determine i_0 (depends on x and s).

Computing F(s, x)

We have

$$F(s,x) = \gamma(s) - \sum_{q \ge 0}^{i_0} x^{s+2q} \left(\frac{v_{2q} - u_{2q} \log(x)}{s+2q} + \frac{u_{2q}}{(s+2q)^2} + \frac{xu_{2q+1}}{s+2q+1} \right),$$

with

$$u_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!};$$

$$u_{2q+1} = \frac{(-1)^{q}\sqrt{\pi}2^{2q+1}q!}{(2q+1)!^{2}C^{2q+1}};$$

$$v_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!} \left(\log(C) - \frac{3}{2}\gamma \frac{1}{2}\sum_{j=1}^{q} j^{-1} + \sum_{j=1}^{2q} j^{-1}\right).$$

Where $C = \frac{B}{2\pi^{3/2}}$.

 \rhd Need to determine i_0 (depends on x and s).

Computing F(s, x)

We have

$$F(s,x) = \gamma(s) - \sum_{q \ge 0}^{i_0} x^{s+2q} \left(\frac{v_{2q} - u_{2q} \log(x)}{s+2q} + \frac{u_{2q}}{(s+2q)^2} + \frac{xu_{2q+1}}{s+2q+1} \right),$$

with

$$u_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!};$$

$$u_{2q+1} = \frac{(-1)^{q}\sqrt{\pi}2^{2q+1}q!}{(2q+1)!^{2}C^{2q+1}};$$

$$v_{2q} = \frac{2(-1)^{q}}{C^{2q}q!(2q)!} \left(\log(C) - \frac{3}{2}\gamma \frac{1}{2}\sum_{j=1}^{q} j^{-1} + \sum_{j=1}^{2q} j^{-1}\right).$$

Where $C = \frac{B}{2\pi^{3/2}}$.

 \triangleright Need to determine i_0 (depends on x and s).

$\rhd \deg(\varphi) = \tfrac{Nc^2}{2\pi\operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

▷ It is an integer:

ightarrow so we need to compute $L(\mathrm{sym}^2\,E,2)$ up to a certain error.

ightarrow this gives a check for the computation.

 \rightarrow it can be large!

ightarrow Question. $\deg(arphi)$ is an integer.

Is it possible to compute $\deg(arphi) \mod \ell$ for many primes ℓ ?

 $\rhd \deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

 \triangleright It is an integer:

ightarrow so we need to compute $L(\mathrm{sym}^2\,E,2)$ up to a certain error.

ightarrow this gives a check for the computation.

 \rightarrow it can be large!

ightarrow Question. $\deg(arphi)$ is an integer.

Is it possible to compute $\deg(arphi) \mod \ell$ for many primes ℓ ?

 $\triangleright \deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

 \triangleright It is an integer:

 \rightarrow so we need to compute $L(\operatorname{sym}^2 E, 2)$ up to a certain *error*.

ightarrow this gives a check for the computation.

 \rightarrow it can be large!

ightarrow Question. $\deg(arphi)$ is an integer.

Is it possible to compute $\deg(arphi) \mod \ell$ for many primes $\ell ?$

 $\triangleright \deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

 \triangleright It is an integer:

- \rightarrow so we need to compute $L(\operatorname{sym}^2 E, 2)$ up to a certain *error*.
- \rightarrow this gives a check for the computation.
- ightarrow it can be large!
- ightarrow Question. $\deg(\varphi)$ is an integer.
- Is it possible to compute $\deg(arphi) \mod \ell$ for many primes $\ell ?$

 $\triangleright \deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

 \triangleright It is an integer:

- \rightarrow so we need to compute $L(\operatorname{sym}^2 E, 2)$ up to a certain *error*.
- \rightarrow this gives a check for the computation.
- \rightarrow it can be large!

ightarrow Question. $\deg(\varphi)$ is an integer.

Is it possible to compute $\deg(arphi) \mod \ell$ for many primes ℓ ?

 $\triangleright \deg(\varphi) = \frac{Nc^2}{2\pi \operatorname{vol}(\Lambda)} L(\operatorname{sym}^2 E, 2) \prod_{p^2 \mid N} L_p(\operatorname{sym}^2 E, p^{-2}).$

 \triangleright It is an integer:

- \rightarrow so we need to compute $L(\operatorname{sym}^2 E, 2)$ up to a certain *error*.
- \rightarrow this gives a check for the computation.
- \rightarrow it can be large!
- \rightarrow **Question.** deg(φ) is an integer.

Is it possible to compute $deg(\varphi) \mod \ell$ for many primes ℓ ?

> Compute Manin's constant (hard!);

 \triangleright Formula not numerically stable for F(s, x) (many cancellation problems, not so easy to fix...);

 \triangleright The value of N_0 is not computed efficiently (easy to fix).

 \rhd Need a more clever and efficient management with quadratic twists (easy to fix).