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Modular parametrization
Let E be an elliptic curve defined over Q with conductor N .

B There exists a map
ϕ : X0(N) −→ E

B It is (nearly) explicit

ϕ : X0(N)(C) −→ C/Λ −→ E(C)

τ ∈ H 7−→ z = c
∑
n≥1

a(n)
n e2iπnτ 7−→ (℘(z), ℘′(z))

where :

L(E, s) =
∑
n≥1

a(n)

ns
is the L-function associated to E;

c is Manin’s constant of E.

Problem. Compute deg(ϕ).
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Why to compute degϕ?
It is a natural invariant attached to E;

the primes dividing deg(ϕ) have certain properties;

the growth of deg(ϕ) is link with certain conjecture;

links with the Petersson norm of f the weight 2 modular form
associated to E.
...

Example. E : y2 = x3 + 11x+ 13, N = 39548.

deg(ϕ) = 5376 = 28 × 3× 7.

Conjecture (M. Watkins)
We have 2r(E) divides deg(ϕ). Here r(E) = 2.
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How to compute deg(ϕ)?

B If Ed is a quadratic twist of E, deg(ϕE) and deg(ϕEd
) are related.

→ Assume E is "minimal" among all its twists (conductor and disc.).

→ Compute this minimal curve.

B We use (Theorem of Zagier)

deg(ϕ) =
Nc2

2π vol(Λ)
L(sym2E, 2)

∏
p2|N

Lp(sym2E, p−2)

where

L(sym2E, s) =
ζN (2s− 2)

ζN (s− 1)

(∑
n

a(n)2

ns

) ∏
p2|N

Lp(sym2E, p−s)−1,<(s) > 2.

We need to determine the conductor B of L(sym2E, s) and the Euler
factor Lp(sym2E,X) for p2 | N .
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B and Lp(sym2E,X)

B If p - N or p||N then

valp(B) = valp(N) and Lp(sym2E,X) = (1−α2
pX)(1−αpβpX)(1−β2

pX)

where αp and βp are the roots of X2 − a(p)X + p.

B If p2|N , then Lp(sym2E,X) = 1 + εpX with ε = −1, 0,+1.

For example, thanks to M. Watkins: if

p ≡ 1 mod 12) or
p ≡ 5 mod 12 and p2 | c6 and p2 - c4 or

p ≡ 7 mod 12 and p2 - c6 or p2 | c6 and p2 | c4

then ε = −1 and valp(B) = 1.

B There are other technical but explicit rules for the other primes.
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The primitive square L-function

Theorem (Coates-Schmidt)
The function L(sym2E, s) has a holomorphic continuation to the
whole complex plane and the function:

Λ(sym2E, s) =

(
B

2π3/2

)s
Γ(s)Γ(s/2)L(sym2E, s)

is entire and satisfies the functional equation

Λ(sym2E, s) = Λ(sym2E, 3− s).

→ Just have to compute Λ(sym2E, 2) using the classical machinery.

Remarks.

We have L(sym2E, s) = L(sym2Ed, s).

If L(sym2E, s) =
∑ b(n)

ns then
∑
n
b(n)
n2 is (slowly) converging.



The primitive square L-function

Theorem (Coates-Schmidt)
The function L(sym2E, s) has a holomorphic continuation to the
whole complex plane and the function:

Λ(sym2E, s) =

(
B

2π3/2

)s
Γ(s)Γ(s/2)L(sym2E, s)

is entire and satisfies the functional equation

Λ(sym2E, s) = Λ(sym2E, 3− s).

→ Just have to compute Λ(sym2E, 2) using the classical machinery.

Remarks.

We have L(sym2E, s) = L(sym2Ed, s).

If L(sym2E, s) =
∑ b(n)

ns then
∑
n
b(n)
n2 is (slowly) converging.



The primitive square L-function

Theorem (Coates-Schmidt)
The function L(sym2E, s) has a holomorphic continuation to the
whole complex plane and the function:

Λ(sym2E, s) =

(
B

2π3/2

)s
Γ(s)Γ(s/2)L(sym2E, s)

is entire and satisfies the functional equation

Λ(sym2E, s) = Λ(sym2E, 3− s).

→ Just have to compute Λ(sym2E, 2) using the classical machinery.

Remarks.

We have L(sym2E, s) = L(sym2Ed, s).

If L(sym2E, s) =
∑ b(n)

ns then
∑
n
b(n)
n2 is (slowly) converging.



Computing Λ(sym2E, s) = γ(s)L(sym2E, s)

We have

Λ(sym2E, s) =

N0∑
n=1

b(n)

ns
F (s, n) +

N0∑
n=1

b(n)

n3−sF (3− s, n) + Error,

where

F (s, x) = γ(s)−
∫ x

0

1

2iπ

∫
<(z)=δ

ts−z−1γ(s)dzdt.

And

|F (s, x)| ≤ 7
x<(s)

A−<(s)A1/3
e3/2A2/3

for A = 23/4π3/2x
B .

→ Useful for computing N0 in function of the Error.



Computing Λ(sym2E, s) = γ(s)L(sym2E, s)

We have

Λ(sym2E, s) =

N0∑
n=1

b(n)

ns
F (s, n) +

N0∑
n=1

b(n)

n3−sF (3− s, n) + Error,

where

F (s, x) = γ(s)−
∫ x

0

1

2iπ

∫
<(z)=δ

ts−z−1γ(s)dzdt.

And

|F (s, x)| ≤ 7
x<(s)

A−<(s)A1/3
e3/2A2/3

for A = 23/4π3/2x
B .

→ Useful for computing N0 in function of the Error.



Computing Λ(sym2E, s) = γ(s)L(sym2E, s)

We have

Λ(sym2E, s) =

N0∑
n=1

b(n)

ns
F (s, n) +

N0∑
n=1

b(n)

n3−sF (3− s, n) + Error,

where

F (s, x) = γ(s)−
∫ x

0

1

2iπ

∫
<(z)=δ

ts−z−1γ(s)dzdt.

And

|F (s, x)| ≤ 7
x<(s)

A−<(s)A1/3
e3/2A2/3

for A = 23/4π3/2x
B .

→ Useful for computing N0 in function of the Error.



Computing F (s, x)

We have

F (s, x) = γ(s)−
i0∑
q≥0

xs+2q

(
v2q − u2q log(x)

s+ 2q
+

u2q

(s+ 2q)2
+

xu2q+1

s+ 2q + 1

)
,

with

u2q =
2(−1)q

C2qq!(2q)!
;

u2q+1 =
(−1)q

√
π22q+1q!

(2q + 1)!2C2q+1
;

v2q =
2(−1)q

C2qq!(2q)!

log(C)− 3

2
γ

1

2

q∑
j=1

j−1 +

2q∑
j=1

j−1

 .

Where C = B
2π3/2 .

B Need to determine i0 (depends on x and s).
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Summary

B deg(ϕ) = Nc2

2π vol(Λ)L(sym2E, 2)
∏
p2|N Lp(sym2E, p−2).

B It is an integer:

→ so we need to compute L(sym2E, 2) up to a certain error.

→ this gives a check for the computation.

→ it can be large!

→ Question. deg(ϕ) is an integer.

Is it possible to compute deg(ϕ) mod ` for many primes `?
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Problems to be fixed

B Compute Manin’s constant (hard!);

B Formula not numerically stable for F (s, x) (many cancellation
problems, not so easy to fix...);

B The value of N0 is not computed efficiently (easy to fix).

B Need a more clever and efficient management with quadratic twists
(easy to fix).


