Atelier PARI

Modular parametrization

Christophe Delaunay

Laboratoire de Mathématiques de Besançon
(Lm^{B})

18 janvier 2013

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

\triangleright It is (nearly) explicit

$$
\varphi: X_{0}(N)(\mathbb{C}) \quad \longrightarrow \quad \mathbb{C} / \Lambda \quad \longrightarrow \quad E(\mathbb{C})
$$

$$
\tau \in \mathbb{H}
$$

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

\triangleright It is (nearly) explicit

$$
\begin{array}{rlc}
\varphi: \quad X_{0}(N)(\mathbb{C}) & \longrightarrow & \mathbb{C} / \Lambda \\
\tau \in \mathbb{H} & \longmapsto & z=c \sum_{n \geq 1} \frac{a(n)}{n} e^{2 i \pi n \tau}
\end{array}
$$

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

\triangleright It is (nearly) explicit

$$
\begin{array}{rlccc}
\varphi: \quad X_{0}(N)(\mathbb{C}) & \longrightarrow & \mathbb{C} / \Lambda & \longrightarrow & E(\mathbb{C}) \\
\tau \in \mathbb{H} & \longmapsto & z=c \sum_{n \geq 1} \frac{a(n)}{n} e^{2 i \pi n \tau} & \longmapsto & \left(\wp(z), \wp^{\prime}(z)\right)
\end{array}
$$

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

\triangleright It is (nearly) explicit

$$
\begin{array}{rlccc}
\varphi: \quad X_{0}(N)(\mathbb{C}) & \longrightarrow & \mathbb{C} / \Lambda & \longrightarrow & E(\mathbb{C}) \\
\tau \in \mathbb{H} & \longmapsto & z=c \sum_{n \geq 1} \frac{a(n)}{n} e^{2 i \pi n \tau} & \longmapsto & \left(\wp(z), \wp^{\prime}(z)\right)
\end{array}
$$

where :

- $L(E, s)=\sum_{n \geq 1} \frac{a(n)}{n^{s}}$ is the L-function associated to E;
- c is Manin's constant of E.

Modular parametrization

Let E be an elliptic curve defined over \mathbb{Q} with conductor N.
\triangleright There exists a map

$$
\varphi: X_{0}(N) \longrightarrow E
$$

\triangleright It is (nearly) explicit

$$
\begin{array}{rlccc}
\varphi: \quad X_{0}(N)(\mathbb{C}) & \longrightarrow & \mathbb{C} / \Lambda & \longrightarrow & E(\mathbb{C}) \\
\tau \in \mathbb{H} & \longmapsto & z=c \sum_{n \geq 1} \frac{a(n)}{n} e^{2 i \pi n \tau} & \longmapsto & \left(\wp(z), \wp^{\prime}(z)\right)
\end{array}
$$

where :

- $L(E, s)=\sum_{n \geq 1} \frac{a(n)}{n^{s}}$ is the L-function associated to E;
- c is Manin's constant of E.

Problem. Compute $\operatorname{deg}(\varphi)$.

Why to compute $\operatorname{deg} \varphi$?

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;
- the primes dividing $\operatorname{deg}(\varphi)$ have certain properties;

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;
- the primes dividing $\operatorname{deg}(\varphi)$ have certain properties;
- the growth of $\operatorname{deg}(\varphi)$ is link with certain conjecture;

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;
- the primes dividing $\operatorname{deg}(\varphi)$ have certain properties;
- the growth of $\operatorname{deg}(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.
- ...

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;
- the primes dividing $\operatorname{deg}(\varphi)$ have certain properties;
- the growth of $\operatorname{deg}(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.
- ...

Example. $E: y^{2}=x^{3}+11 x+13, N=39548$.

$$
\operatorname{deg}(\varphi)=5376=2^{8} \times 3 \times 7
$$

Why to compute $\operatorname{deg} \varphi$?

- It is a natural invariant attached to E;
- the primes dividing $\operatorname{deg}(\varphi)$ have certain properties;
- the growth of $\operatorname{deg}(\varphi)$ is link with certain conjecture;
- links with the Petersson norm of f the weight 2 modular form associated to E.
- ...

Example. $E: y^{2}=x^{3}+11 x+13, N=39548$.

$$
\operatorname{deg}(\varphi)=5376=2^{8} \times 3 \times 7
$$

Conjecture (M. Watkins)

We have $2^{r(E)}$ divides $\operatorname{deg}(\varphi)$. Here $r(E)=2$.

How to compute $\operatorname{deg}(\varphi)$?

How to compute $\operatorname{deg}(\varphi)$?

\triangleright If E_{d} is a quadratic twist of $E, \operatorname{deg}\left(\varphi_{E}\right)$ and $\operatorname{deg}\left(\varphi_{E_{d}}\right)$ are related.

How to compute $\operatorname{deg}(\varphi)$?

\triangleright If E_{d} is a quadratic twist of $E, \operatorname{deg}\left(\varphi_{E}\right)$ and $\operatorname{deg}\left(\varphi_{E_{d}}\right)$ are related.
\rightarrow Assume E is "minimal" among all its twists (conductor and disc.).
\rightarrow Compute this minimal curve.

How to compute $\operatorname{deg}(\varphi)$?

\triangleright If E_{d} is a quadratic twist of $E, \operatorname{deg}\left(\varphi_{E}\right)$ and $\operatorname{deg}\left(\varphi_{E_{d}}\right)$ are related.
\rightarrow Assume E is "minimal" among all its twists (conductor and disc.).
\rightarrow Compute this minimal curve.
\triangleright We use (Theorem of Zagier)

$$
\operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)
$$

where

$$
L\left(\operatorname{sym}^{2} E, s\right)=\frac{\zeta_{N}(2 s-2)}{\zeta_{N}(s-1)}\left(\sum_{n} \frac{a(n)^{2}}{n^{s}}\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-s}\right)^{-1}, \Re(s)>2 .
$$

How to compute $\operatorname{deg}(\varphi)$?

\triangleright If E_{d} is a quadratic twist of $E, \operatorname{deg}\left(\varphi_{E}\right)$ and $\operatorname{deg}\left(\varphi_{E_{d}}\right)$ are related.
\rightarrow Assume E is "minimal" among all its twists (conductor and disc.).
\rightarrow Compute this minimal curve.
\triangleright We use (Theorem of Zagier)

$$
\operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)
$$

where
$L\left(\operatorname{sym}^{2} E, s\right)=\frac{\zeta_{N}(2 s-2)}{\zeta_{N}(s-1)}\left(\sum_{n} \frac{a(n)^{2}}{n^{s}}\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-s}\right)^{-1}, \Re(s)>2$.
We need to determine the conductor B of $L\left(\operatorname{sym}^{2} E, s\right)$ and the Euler factor $L_{p}\left(\operatorname{sym}^{2} E, X\right)$ for $p^{2} \mid N$.

B and $L_{p}\left(\operatorname{sym}^{2} E, X\right)$

B and $L_{p}\left(\operatorname{sym}^{2} E, X\right)$

\triangleright If $p \nmid N$ or $p \| N$ then
$\operatorname{val}_{p}(B)=\operatorname{val}_{p}(N) \quad$ and $L_{p}\left(\operatorname{sym}^{2} E, X\right)=\left(1-\alpha_{p}^{2} X\right)\left(1-\alpha_{p} \beta_{p} X\right)\left(1-\beta_{p}^{2} X\right)$
where α_{p} and β_{p} are the roots of $X^{2}-a(p) X+p$.

B and $L_{p}\left(\operatorname{sym}^{2} E, X\right)$

\triangleright If $p \nmid N$ or $p \| N$ then
$\operatorname{val}_{p}(B)=\operatorname{val}_{p}(N) \quad$ and $L_{p}\left(\operatorname{sym}^{2} E, X\right)=\left(1-\alpha_{p}^{2} X\right)\left(1-\alpha_{p} \beta_{p} X\right)\left(1-\beta_{p}^{2} X\right)$
where α_{p} and β_{p} are the roots of $X^{2}-a(p) X+p$.
\triangleright If $p^{2} \mid N$, then $L_{p}\left(\operatorname{sym}^{2} E, X\right)=1+\varepsilon p X$ with $\varepsilon=-1,0,+1$.

B and $L_{p}\left(\operatorname{sym}^{2} E, X\right)$

\triangleright If $p \nmid N$ or $p \| N$ then
$\operatorname{val}_{p}(B)=\operatorname{val}_{p}(N) \quad$ and $L_{p}\left(\operatorname{sym}^{2} E, X\right)=\left(1-\alpha_{p}^{2} X\right)\left(1-\alpha_{p} \beta_{p} X\right)\left(1-\beta_{p}^{2} X\right)$
where α_{p} and β_{p} are the roots of $X^{2}-a(p) X+p$.
\triangleright If $p^{2} \mid N$, then $L_{p}\left(\operatorname{sym}^{2} E, X\right)=1+\varepsilon p X$ with $\varepsilon=-1,0,+1$.

For example, thanks to M. Watkins: if

$$
\begin{array}{cc}
p \equiv 1 \bmod 12) & \text { or } \\
p \equiv 5 \bmod 12 \text { and } p^{2} \mid c_{6} \text { and } p^{2} \nmid c_{4} & \text { or } \\
p \equiv 7 \bmod 12 \text { and } p^{2} \nmid c_{6} \text { or } p^{2} \mid c_{6} \text { and } p^{2} \mid c_{4} &
\end{array}
$$

then $\varepsilon=-1$ and $\operatorname{val}_{p}(B)=1$.

B and $L_{p}\left(\operatorname{sym}^{2} E, X\right)$

\triangleright If $p \nmid N$ or $p \| N$ then
$\operatorname{val}_{p}(B)=\operatorname{val}_{p}(N) \quad$ and $L_{p}\left(\operatorname{sym}^{2} E, X\right)=\left(1-\alpha_{p}^{2} X\right)\left(1-\alpha_{p} \beta_{p} X\right)\left(1-\beta_{p}^{2} X\right)$
where α_{p} and β_{p} are the roots of $X^{2}-a(p) X+p$.
\triangleright If $p^{2} \mid N$, then $L_{p}\left(\operatorname{sym}^{2} E, X\right)=1+\varepsilon p X$ with $\varepsilon=-1,0,+1$.

For example, thanks to M. Watkins: if

$$
\begin{array}{cc}
p \equiv 1 \bmod 12) & \text { or } \\
p \equiv 5 \bmod 12 \text { and } p^{2} \mid c_{6} \text { and } p^{2} \nmid c_{4} & \text { or } \\
p \equiv 7 \bmod 12 \text { and } p^{2} \nmid c_{6} \text { or } p^{2} \mid c_{6} \text { and } p^{2} \mid c_{4} &
\end{array}
$$

then $\varepsilon=-1$ and $\operatorname{val}_{p}(B)=1$.
\triangleright There are other technical but explicit rules for the other primes.

The primitive square L-function

Theorem (Coates-Schmidt)

The function $L\left(\operatorname{sym}^{2} E, s\right)$ has a holomorphic continuation to the whole complex plane and the function:

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\left(\frac{B}{2 \pi^{3 / 2}}\right)^{s} \Gamma(s) \Gamma(s / 2) L\left(\operatorname{sym}^{2} E, s\right)
$$

is entire and satisfies the functional equation

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\Lambda\left(\operatorname{sym}^{2} E, 3-s\right)
$$

The primitive square L-function

Theorem (Coates-Schmidt)

The function $L\left(\operatorname{sym}^{2} E, s\right)$ has a holomorphic continuation to the whole complex plane and the function:

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\left(\frac{B}{2 \pi^{3 / 2}}\right)^{s} \Gamma(s) \Gamma(s / 2) L\left(\operatorname{sym}^{2} E, s\right)
$$

is entire and satisfies the functional equation

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\Lambda\left(\operatorname{sym}^{2} E, 3-s\right) .
$$

\rightarrow Just have to compute $\Lambda\left(\operatorname{sym}^{2} E, 2\right)$ using the classical machinery.

The primitive square L-function

Theorem (Coates-Schmidt)

The function $L\left(\operatorname{sym}^{2} E, s\right)$ has a holomorphic continuation to the whole complex plane and the function:

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\left(\frac{B}{2 \pi^{3 / 2}}\right)^{s} \Gamma(s) \Gamma(s / 2) L\left(\operatorname{sym}^{2} E, s\right)
$$

is entire and satisfies the functional equation

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\Lambda\left(\operatorname{sym}^{2} E, 3-s\right) .
$$

\rightarrow Just have to compute $\Lambda\left(\operatorname{sym}^{2} E, 2\right)$ using the classical machinery.

Remarks.

We have $L\left(\operatorname{sym}^{2} E, s\right)=L\left(\operatorname{sym}^{2} E_{d}, s\right)$.
If $L\left(\operatorname{sym}^{2} E, s\right)=\sum \frac{b(n)}{n^{s}}$ then $\sum_{n} \frac{b(n)}{n^{2}}$ is (slowly) converging.

Computing $\Lambda\left(\operatorname{sym}^{2} E, s\right)=\gamma(s) L\left(\operatorname{sym}^{2} E, s\right)$

We have

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n)+\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n)+\text { Error }
$$

where

$$
F(s, x)=\gamma(s)-\int_{0}^{x} \frac{1}{2 i \pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) d z d t .
$$

Computing $\Lambda\left(\operatorname{sym}^{2} E, s\right)=\gamma(s) L\left(\operatorname{sym}^{2} E, s\right)$

We have

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n)+\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n)+\text { Error }
$$

where

$$
F(s, x)=\gamma(s)-\int_{0}^{x} \frac{1}{2 i \pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) d z d t .
$$

And

$$
|F(s, x)| \leq 7 \frac{x^{\Re(s)}}{A-\Re(s) A^{1 / 3}} e^{3 / 2 A^{2 / 3}}
$$

for $A=\frac{2^{3 / 4} \pi^{3 / 2} x}{B}$.

Computing $\Lambda\left(\operatorname{sym}^{2} E, s\right)=\gamma(s) L\left(\operatorname{sym}^{2} E, s\right)$

We have

$$
\Lambda\left(\operatorname{sym}^{2} E, s\right)=\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{s}} F(s, n)+\sum_{n=1}^{N_{0}} \frac{b(n)}{n^{3-s}} F(3-s, n)+\text { Error }
$$

where

$$
F(s, x)=\gamma(s)-\int_{0}^{x} \frac{1}{2 i \pi} \int_{\Re(z)=\delta} t^{s-z-1} \gamma(s) d z d t .
$$

And

$$
|F(s, x)| \leq 7 \frac{x^{\Re(s)}}{A-\Re(s) A^{1 / 3}} e^{3 / 2 A^{2 / 3}}
$$

for $A=\frac{2^{3 / 4} \pi^{3 / 2} x}{B}$.
\rightarrow Useful for computing N_{0} in function of the Error.

Computing $F(s, x)$

We have
$F(s, x)=\gamma(s)-\sum_{q \geq 0}^{i_{0}} x^{s+2 q}\left(\frac{v_{2 q}-u_{2 q} \log (x)}{s+2 q}+\frac{u_{2 q}}{(s+2 q)^{2}}+\frac{x u_{2 q+1}}{s+2 q+1}\right)$,
with

Computing $F(s, x)$

We have
$F(s, x)=\gamma(s)-\sum_{q \geq 0}^{i_{0}} x^{s+2 q}\left(\frac{v_{2 q}-u_{2 q} \log (x)}{s+2 q}+\frac{u_{2 q}}{(s+2 q)^{2}}+\frac{x u_{2 q+1}}{s+2 q+1}\right)$,
with

$$
\begin{aligned}
u_{2 q} & =\frac{2(-1)^{q}}{C^{2 q} q!(2 q)!} ; \\
u_{2 q+1} & =\frac{(-1)^{q} \sqrt{\pi} 2^{2 q+1} q!}{(2 q+1)!^{2} C^{2 q+1}} ; \\
v_{2 q} & =\frac{2(-1)^{q}}{C^{2 q} q!(2 q)!}\left(\log (C)-\frac{3}{2} \gamma \frac{1}{2} \sum_{j=1}^{q} j^{-1}+\sum_{j=1}^{2 q} j^{-1}\right) .
\end{aligned}
$$

Where $C=\frac{B}{2 \pi^{3 / 2}}$.

Computing $F(s, x)$

We have

$$
F(s, x)=\gamma(s)-\sum_{q \geq 0}^{i_{0}} x^{s+2 q}\left(\frac{v_{2 q}-u_{2 q} \log (x)}{s+2 q}+\frac{u_{2 q}}{(s+2 q)^{2}}+\frac{x u_{2 q+1}}{s+2 q+1}\right)
$$

with

$$
\begin{aligned}
u_{2 q} & =\frac{2(-1)^{q}}{C^{2 q} q!(2 q)!} ; \\
u_{2 q+1} & =\frac{(-1)^{q} \sqrt{\pi} 2^{2 q+1} q!}{(2 q+1)!^{2} C^{2 q+1}} ; \\
v_{2 q} & =\frac{2(-1)^{q}}{C^{2 q} q!(2 q)!}\left(\log (C)-\frac{3}{2} \gamma \frac{1}{2} \sum_{j=1}^{q} j^{-1}+\sum_{j=1}^{2 q} j^{-1}\right) .
\end{aligned}
$$

Where $C=\frac{B}{2 \pi^{3 / 2}}$.
\triangleright Need to determine i_{0} (depends on x and s).

Summary

$$
\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right) .
$$

Summary

$\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)$.
\triangleright It is an integer:

Summary

$\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)$.
\triangleright It is an integer:
\rightarrow so we need to compute $L\left(\operatorname{sym}^{2} E, 2\right)$ up to a certain error.

Summary

$\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)$.
\triangleright It is an integer:
\rightarrow so we need to compute $L\left(\operatorname{sym}^{2} E, 2\right)$ up to a certain error.
\rightarrow this gives a check for the computation.

Summary

$\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)$.
\triangleright It is an integer:
\rightarrow so we need to compute $L\left(\operatorname{sym}^{2} E, 2\right)$ up to a certain error.
\rightarrow this gives a check for the computation.
\rightarrow it can be large!

Summary

$\triangleright \operatorname{deg}(\varphi)=\frac{N c^{2}}{2 \pi \operatorname{vol}(\Lambda)} L\left(\operatorname{sym}^{2} E, 2\right) \prod_{p^{2} \mid N} L_{p}\left(\operatorname{sym}^{2} E, p^{-2}\right)$.
\triangleright It is an integer:
\rightarrow so we need to compute $L\left(\operatorname{sym}^{2} E, 2\right)$ up to a certain error.
\rightarrow this gives a check for the computation.
\rightarrow it can be large!
\rightarrow Question. $\operatorname{deg}(\varphi)$ is an integer.
Is it possible to compute $\operatorname{deg}(\varphi) \bmod \ell$ for many primes ℓ ?

Problems to be fixed

\triangleright Compute Manin's constant (hard!);
\triangleright Formula not numerically stable for $F(s, x)$ (many cancellation problems, not so easy to fix...);
\triangleright The value of N_{0} is not computed efficiently (easy to fix).
\triangleright Need a more clever and efficient management with quadratic twists (easy to fix).

