
Number field sieve

Löıc Grenié

January 16th 2013

1 The number field sieve

1.1 Introduction

We are trying to compute the class group of a number K field using Buchmann algorithm.
Let n be the dimension of K, OK its ring of integers. Basically one computes a limit T
such that

BT = {p : p is a prime ideal and N p 6 T}

contains a set of generators of the class group of K and then a set ET of elements of K
divisible only by the primes in BT and such that the ideal class group of K is isomorphic
to

〈BT 〉/〈(x) : x ∈ ET 〉 .

The elements of BT are called generators and the elements of ET relations. If #ET > #BT
products of elements of ET yield units. Using analytic class number formula one can test
whether the class group and the unit group of K have been computed.

The two main problems of the algorithm are finding relations (elements of ET) and a
linear algebra HNF problem yielding the class group and units through their logarithmic
embeddings.

You can find more information in last year’s bnfinit() seminar in Atelier PARI/GP
2012.

The number field sieve aim is to efficiently find elements of ET .

1.2 Biasse and Fieker’s sieve

Building on the quadratic sieve, Biasse and Fieker have suggested a way to find relations.
Their basic algorithm, called line sieving is the following.

Init

1. Choose two positive integers I and J .

1

2. Choose two elements α and β of OK (precisely the two first elements of an LLL basis
of OK for a random norm). The idea is to look search for elements of ET of the form
xα + yβ with (x, y) ∈ [−I, I]× [0, J].

3. Initialize a table L of reals with an approximation of log |NK/Q(xα+yβ)|, for (x, y) ∈
[−I, I]× [0, J].

4. Let y0 ∈ [1, J]. Then P (x) = N(xα + y0β) is a polynomial of degree (at most) n.

Sieve

5. Fix a prime p below one of the prime ideals of BT .

6. Let x0 be one of the roots of P mod p. Then for all k ∈ Z, N((x0 + kp)α + y0β) is
congruent to 0 mod p. Remove log p from L[x0 + kp, y0] for all suitable k.

7. Iterate over x0, p and y0.

Relation recollection

8. Try to factor xα + yβ for all (x, y) such that L[x, y] 6 l0 for some limit l0.

They also mention

• Lattice sieving in which the iteration over k is combined with iteration over y0
through the use of a reduced basis of the lattice spanned by (x0, 1) and (p, 0) in
[−I, I]× [0, J]

• Special-q strategy, where the main loop is over the “large” primes (above I).

We will have a false negative if xα + yβ ∈ ET but L[x, y] > l0 after the loops and a false
positive if xα + yβ 6∈ ET but L[x, y] 6 l0. Note that both can happen if the initialization
of L[x, y] is too far from log NK/Q(xα + yβ).

2 Our implementation

2.1 Some remarks

The algorithm is based on the fact that, for t ∈ K, |NK/Q(t)| =
∏

p N pvp(t). In Step 6 we
thus remove log p from the log of the norm of xα+yβ when we have verified that p divides
such norm. The limit l0 accounts for the facts that we do not really factor xα + yβ but
find some of its prime factors in BT and that we have an approximation of the logarithm
of its absolute norm.

We see here a three possible additional imprecisions: when p divides the norm of t we
know that some ideal p | p divides t but

• it is possible that p 6∈ BT if K is not Galois over Q, case in which we should not
remove log p from L[x, y];

• the norm of p could be greater than p or

2

• there could be more than one ideal above p in BT dividing t. In the last two cases
we should remove a multiple of log p from L[x, y].

It would be much better to know which elements of BT divide xα+ yβ and what is the log
of their norm.

2.2 Norm

The log of the norm of each ideal of BT can easily be computed beforehand, during the
computation of BT . Indeed for each prime p 6 T , pari computes log p and the inertial
index of each p | p.

2.3 Divisibility

It is not very difficult to check whether a given element t ∈ K is an divisible by a prime
ideal p. We suppose that we have a Z-basis V of OK , that we have a Z-basis H of p such
that its coordinates in V are a matrix H in HNF form, that p ∩ Z = pZ and N p = pf .

There is a subset f = {1, ...} of {1, . . . , n} such that #f = f and if H = (hij) then the
submatrix of H made of the rows and columns with indices in f is equal to pIf and

∀i, i 6∈ f ⇒ hii = 1 .

Then H is a Q-basis of K and t ∈ p if and if only if its coordinates in this basis are
integral. If t is identified with the column of its coordinates in V , then its coordinates in
H are H−1t. Given the form of H explained above, to test the integrality of H−1t it is
sufficient to check that the f coordinates with indices in f are integral.

This in turn can be done the following way. Let C = Cp be the submatrix of pH−1

made of the rows with indices in f . Then the coordinates of H−1t are integral if and only
if the coefficients of Ct are multiple of p i.e.

t ∈ kerC mod p .

While we compute BT we thus compute for each ideal p the congruence matrix Cp.
Turning back to the sieving algorithm, suppose we have chosen α and β, let M be the

n × 2 matrix made of the coordinates of α and β in V and denote Z = Zα + Zβ ⊂ OK .
We then have xα+ yβ ∈ p if and only if (identifying elements of K with their coordinates
in V)

xα + yβ ∈ kerCp mod p

which in turn is equivalent to (
x
y

)
∈ kerCpM mod p .

At that point we are in a better situation because we can easily compute a Z-basis(
a b
0 c

)
3

in HNF form of the pullback of the lattice p ∩ Z. Moreover {a, c} ⊆ {1, p} and c = p ⇒
b = 0 (and if a = c = p then elements of p are not interesting for our purpose because
they are rational multiples of elements of OK). Informal benchmarks seem to indicate that
computing kerCpM for all p | p is marginally faster than computing the roots modulo p of

N(xα + β) but this is not the main point of this observation: the point is that we get the
precise ideal(s) that divide given xα + yβ and the log of their norm.

2.4 Higher power divisibility

The same idea as above can easily be used for a prime-power ideal pr. For each prime

ideal p ∈ BT compute r =
⌊
log 2IJ
log N p

⌋
. Let Hr be the matrix of a basis of pr and Cp,r be the

submatrix of prH−1r consisting of the non-zero-mod-pr rows. It is not difficult to compute
a Z-basis (

ar br
0 cr

)
in HNF form of kerCp,rM i.e. of the pullback of the lattice pr ∩ Z. If we are lucky
enough that either (ar, cr) = (pr−1a, c) or (ar, cr) = (a, pr−1c), then for 1 6 k 6 r, we have

xα+yβ ∈ pk if and only if (x, y) lies in the lattice generated by

(
ar br
0 cr

)
mod pk. If we

are in one of these two lucky cases, easy congruences give the elements of all pk. Otherwise
we do not try to be more clever and just be happy with the elements of p.

The computation is fairly efficient. We get nearly exact valuation for all primes in BT
of all elements in [−I, I]α + [1, J]β in a few milliseconds.

Shortcomings: it is not very efficient for higher degrees (n > 7) or too small discrimi-
nant.

2.5 General organization

The general algorithm is as Function algsieve shown below. The logarithm of archimedean
embeddings is described in the next paragraph.

4

Input: K, T , BT , {Cp}, {Cp,r}, S ⊂ BT
Output: Some elements of K factorizable over BT

1 R← ∅;
2 I ← bT log log |∆K |c;
3 J ← blog |∆K |c;
4 l0 ← 1

2 log T ;
5 N ← random norm;
6 for I ∈ {OK} ∪ S do
7 B ← LLL(I, N);
8 α← B[1];
9 β ← B[2];

10 if α is factorizable over BT then
11 R← R ∪ {α};
12 end
13 M ← (α|β);
14 L← logarch(K,α, β, I, J);
15 for p ∈ BT do
16 [a, b, 0, c]← kerCpM mod p;
17 [ar, br, 0, cr]← kerCp,rM mod pr;
18 for j = c to J step c do
19 for i = −I + ((I + bj)%a) to I step a do
20 if Lucky case and i ≡ jar (mod p2) then
21 L[i, j]← L[i, j]− min(r, vp(i− jar)) log N p;
22 else
23 L[i, j]← L[i, j]− log N p;
24 end

25 end

26 end

27 end
28 for −I 6 i 6 I do
29 for 1 6 j 6 J do
30 if L[i, j] 6 l0 then
31 if iα+ jβ is factorizable over BT then
32 R← R ∪ {iα+ jβ};
33 end

34 end

35 end

36 end

37 end
38 return R;

Function algsieve(K,T ,BT ,{Cp},{Cp,r},S ⊂ BT)

5

2.6 Archimedean embedding

We used the following method to compute all L[x, y] ' log |NKQ(xα+yβ)|. First, observe
that

L[x, y] = n log y + log
∣∣P(x

y

)∣∣ where P (x) = NK/Q(xα + β) .

To compute f(t) = log |P (t)| we observe that

f ′(t) =
P ′(t)

P (t)

and thus that f ′ changes sign where exactly one of P or P ′ changes sign.
We compute their square-free factorization of Q1 = P

gcd(P,P ′)
and Q2 = P ′

gcd(P,P ′)
. We

thus have

P = gcd(P, P ′)
k∏
i=1

Qvi
i

P ′ = gcd(P, P ′)
k+l∏

i=k+1

Qvi
i

We then compute the real zeros of the Qi’s such that vi is odd, using Uspensky method.
These are the points {ti} where f ′ changes sign.

As a further optimization, observe that, if β
α

is of degree n, then P changes sign at the

real archimedean embeddings of −β
α

thus we can save the computation of the real roots of

P . If instead β
α

is of degree lower than n then P is a power and Uspensky method is way
faster.

We substitute the ti with their best approximations from below and from above with
rational numbers of denominators at most J and add −I and I to the list. Then f(t) is
monotonous on each [ti, ti+1]. On the segment [ti, ti+1] we compute f(t) by dichotomy: we
compute an approximation of f(t) by linear interpolation if |f(ti) − f(ti+1)| 6 2 and cut
the segment in half otherwise. As we can expect, we compute a lot of approximations of f
near the roots of P .

The result is excellent: the error on the computation of the log of the norm is lower,
usually much lower, than 2.

The slowest part is the computation of the real roots of P ′ and can become a significant
part of the whole sieve if n is above 4. To dilute the problem we cannot take I and J too
small.

The corresponding algorithm is given as Function logarch below.

6

Input: K, α, β, I and J
Output: A table L such that for −I 6 x 6 I and 1 6 y 6 J ,

L[x, y] ' log |NK/Q(xα+ yβ)|
1 L← array(I, J);
2 P ← N(xα+ β);
3 P1← P ′;
4 D ← (P, P1);
5 P ← P/D;
6 P1← P1/D;
7 T ← concat(realroots(SQFF of P), realroots(SQFF of P1));
8 T ← bestapprs(T,J);
9 T ← concat([[−I], T, [I]]);

10 A← array(#T);
11 A[1]← log |P (T [1])|;
12 for 2 6 i 6 #T do
13 A[i]← log |P (T [i])|;
14 while |A[i]−A[i− 1]| > 2 do
15 Increase the size of T and A;
16 T [(i+ 1)..#T] = T [i..(#T − 1)];

17 T [i]← T [i−1]+T [i]
2 ;

18 A[i]← log |P (T [i])|;
19 end

20 end
21 for 1 6 j 6 J do
22 [k, r, dr]← [0, 0, 0];
23 for −I 6 i 6 I do
24 r ← r + dr;

25 while k < #T and i
j > T [k + 1] do

26 k ← k + 1;

27 dr ← A[k+1]−A[k]
j(T [k+1]−T [k]) ;

28 r ← n log j +A[k] + (i− j ·A[k])dr;

29 end
30 L[i, j]← r;

31 end

32 end
33 return L

Function logarch(K, α, β, I, J)

7

	The number field sieve
	Introduction
	Biasse and Fieker's sieve

	Our implementation
	Some remarks
	Norm
	Divisibility
	Higher power divisibility
	General organization
	Archimedean embedding

