Number field sieve

Loïc Grenié

January $16^{\text {th }} 2013$

1 The number field sieve

1.1 Introduction

We are trying to compute the class group of a number K field using Buchmann algorithm. Let n be the dimension of K, \mathcal{O}_{K} its ring of integers. Basically one computes a limit T such that

$$
\mathcal{B}_{T}=\{\mathfrak{p}: \mathfrak{p} \text { is a prime ideal and } \mathrm{N} \mathfrak{p} \leqslant T\}
$$

contains a set of generators of the class group of K and then a set E_{T} of elements of K divisible only by the primes in \mathcal{B}_{T} and such that the ideal class group of K is isomorphic to

$$
\left\langle\mathcal{B}_{T}\right\rangle /\left\langle(x): x \in E_{T}\right\rangle .
$$

The elements of \mathcal{B}_{T} are called generators and the elements of E_{T} relations. If $\# E_{T}>\# \mathcal{B}_{T}$ products of elements of E_{T} yield units. Using analytic class number formula one can test whether the class group and the unit group of K have been computed.

The two main problems of the algorithm are finding relations (elements of E_{T}) and a linear algebra HNF problem yielding the class group and units through their logarithmic embeddings.

You can find more information in last year's bnfinit() seminar in Atelier PARI/GP 2012.

The number field sieve aim is to efficiently find elements of E_{T}.

1.2 Biasse and Fieker's sieve

Building on the quadratic sieve, Biasse and Fieker have suggested a way to find relations. Their basic algorithm, called line sieving is the following.

Init

1. Choose two positive integers I and J.
2. Choose two elements α and β of \mathcal{O}_{K} (precisely the two first elements of an LLL basis of \mathcal{O}_{K} for a random norm). The idea is to look search for elements of E_{T} of the form $x \alpha+y \beta$ with $(x, y) \in[-I, I] \times[0, J]$.
3. Initialize a table L of reals with an approximation of $\log \left|\mathrm{N}_{K / \mathbf{Q}}(x \alpha+y \beta)\right|$, for $(x, y) \in$ $[-I, I] \times[0, J]$.
4. Let $y_{0} \in[1, J]$. Then $P(x)=\mathrm{N}\left(x \alpha+y_{0} \beta\right)$ is a polynomial of degree (at most) n.

Sieve
5. Fix a prime p below one of the prime ideals of \mathcal{B}_{T}.
6. Let x_{0} be one of the roots of $P \bmod p$. Then for all $k \in \mathbf{Z}, \mathrm{~N}\left(\left(x_{0}+k p\right) \alpha+y_{0} \beta\right)$ is congruent to $0 \bmod p$. Remove $\log p$ from $L\left[x_{0}+k p, y_{0}\right]$ for all suitable k.
7. Iterate over x_{0}, p and y_{0}.

Relation recollection

8. Try to factor $x \alpha+y \beta$ for all (x, y) such that $L[x, y] \leqslant l_{0}$ for some limit l_{0}.

They also mention

- Lattice sieving in which the iteration over k is combined with iteration over y_{0} through the use of a reduced basis of the lattice spanned by $\left(x_{0}, 1\right)$ and $(p, 0)$ in $[-I, I] \times[0, J]$
- Special- q strategy, where the main loop is over the "large" primes (above I).

We will have a false negative if $x \alpha+y \beta \in E_{T}$ but $L[x, y]>l_{0}$ after the loops and a false positive if $x \alpha+y \beta \notin E_{T}$ but $L[x, y] \leqslant l_{0}$. Note that both can happen if the initialization of $L[x, y]$ is too far from $\log \mathrm{N}_{K / \mathbf{Q}}(x \alpha+y \beta)$.

2 Our implementation

2.1 Some remarks

The algorithm is based on the fact that, for $t \in K,\left|\mathrm{~N}_{K / \mathbf{Q}}(t)\right|=\prod_{\mathfrak{p}} \mathrm{N} \mathfrak{p}^{v_{\mathfrak{p}}(t)}$. In Step 6 we thus remove $\log p$ from the \log of the norm of $x \alpha+y \beta$ when we have verified that p divides such norm. The limit l_{0} accounts for the facts that we do not really factor $x \alpha+y \beta$ but find some of its prime factors in \mathcal{B}_{T} and that we have an approximation of the logarithm of its absolute norm.

We see here a three possible additional imprecisions: when p divides the norm of t we know that some ideal $\mathfrak{p} \mid p$ divides t but

- it is possible that $\mathfrak{p} \notin \mathcal{B}_{T}$ if K is not Galois over \mathbf{Q}, case in which we should not remove $\log p$ from $L[x, y]$;
- the norm of \mathfrak{p} could be greater than p or
- there could be more than one ideal above p in \mathcal{B}_{T} dividing t. In the last two cases we should remove a multiple of $\log p$ from $L[x, y]$.
It would be much better to know which elements of \mathcal{B}_{T} divide $x \alpha+y \beta$ and what is the \log of their norm.

2.2 Norm

The log of the norm of each ideal of \mathcal{B}_{T} can easily be computed beforehand, during the computation of \mathcal{B}_{T}. Indeed for each prime $p \leqslant T$, pari computes $\log p$ and the inertial index of each $\mathfrak{p} \mid p$.

2.3 Divisibility

It is not very difficult to check whether a given element $t \in K$ is an divisible by a prime ideal \mathfrak{p}. We suppose that we have a \mathbf{Z}-basis \mathcal{V} of \mathcal{O}_{K}, that we have a \mathbf{Z}-basis \mathcal{H} of \mathfrak{p} such that its coordinates in \mathcal{V} are a matrix H in HNF form, that $\mathfrak{p} \cap \mathbf{Z}=p \mathbf{Z}$ and $N \mathfrak{p}=p^{f}$.

There is a subset $\underline{f}=\{1, \ldots\}$ of $\{1, \ldots, n\}$ such that $\# \underline{f}=f$ and if $H=\left(h_{i j}\right)$ then the submatrix of H made of the rows and columns with indices in \underline{f} is equal to $p I_{f}$ and

$$
\forall i, \quad i \notin \underline{f} \Rightarrow h_{i i}=1
$$

Then \mathcal{H} is a \mathbf{Q}-basis of K and $t \in \mathfrak{p}$ if and if only if its coordinates in this basis are integral. If t is identified with the column of its coordinates in \mathcal{V}, then its coordinates in \mathcal{H} are $H^{-1} t$. Given the form of H explained above, to test the integrality of $H^{-1} t$ it is sufficient to check that the f coordinates with indices in \underline{f} are integral.

This in turn can be done the following way. Let $C=C_{\mathfrak{p}}$ be the submatrix of pH^{-1} made of the rows with indices in \underline{f}. Then the coordinates of $H^{-1} t$ are integral if and only if the coefficients of $C t$ are multiple of p i.e.

$$
t \in \operatorname{ker} C \bmod p
$$

While we compute \mathcal{B}_{T} we thus compute for each ideal \mathfrak{p} the congruence matrix $C_{\mathfrak{p}}$.
Turning back to the sieving algorithm, suppose we have chosen α and β, let M be the $n \times 2$ matrix made of the coordinates of α and β in \mathcal{V} and denote $\mathcal{Z}=\mathbf{Z} \alpha+\mathbf{Z} \beta \subset \mathcal{O}_{K}$. We then have $x \alpha+y \beta \in \mathfrak{p}$ if and only if (identifying elements of K with their coordinates in \mathcal{V})

$$
x \alpha+y \beta \in \operatorname{ker} C_{\mathfrak{p}} \bmod p
$$

which in turn is equivalent to

$$
\binom{x}{y} \in \operatorname{ker} C_{\mathfrak{p}} M \bmod p .
$$

At that point we are in a better situation because we can easily compute a Z-basis

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

in HNF form of the pullback of the lattice $\mathfrak{p} \cap \mathcal{Z}$. Moreover $\{a, c\} \subseteq\{1, p\}$ and $c=p \Rightarrow$ $b=0$ (and if $a=c=p$ then elements of \mathfrak{p} are not interesting for our purpose because they are rational multiples of elements of \mathcal{O}_{K}). Informal benchmarks seem to indicate that computing ker $C_{\mathfrak{p}} M$ for all $\mathfrak{p} \mid p$ is marginally faster than computing the roots modulo p of $\mathrm{N}(x \alpha+\beta)$ but this is not the main point of this observation: the point is that we get the precise ideal(s) that divide given $x \alpha+y \beta$ and the log of their norm.

2.4 Higher power divisibility

The same idea as above can easily be used for a prime-power ideal \mathfrak{p}^{r}. For each prime ideal $\mathfrak{p} \in \mathcal{B}_{T}$ compute $r=\left\lfloor\frac{\log 2 I J}{\log N \mathfrak{p}}\right\rfloor$. Let H_{r} be the matrix of a basis of \mathfrak{p}^{r} and $C_{\mathfrak{p}, r}$ be the submatrix of $p^{r} H_{r}^{-1}$ consisting of the non-zero-mod- p^{r} rows. It is not difficult to compute a Z-basis

$$
\left(\begin{array}{cc}
a_{r} & b_{r} \\
0 & c_{r}
\end{array}\right)
$$

in HNF form of $\operatorname{ker} C_{\mathfrak{p}, r} M$ i.e. of the pullback of the lattice $\mathfrak{p}^{r} \cap \mathcal{Z}$. If we are lucky enough that either $\left(a_{r}, c_{r}\right)=\left(p^{r-1} a, c\right)$ or $\left(a_{r}, c_{r}\right)=\left(a, p^{r-1} c\right)$, then for $1 \leqslant k \leqslant r$, we have $x \alpha+y \beta \in \mathfrak{p}^{k}$ if and only if (x, y) lies in the lattice generated by $\left(\begin{array}{cc}a_{r} & b_{r} \\ 0 & c_{r}\end{array}\right) \bmod p^{k}$. If we are in one of these two lucky cases, easy congruences give the elements of all \mathfrak{p}^{k}. Otherwise we do not try to be more clever and just be happy with the elements of \mathfrak{p}.

The computation is fairly efficient. We get nearly exact valuation for all primes in \mathcal{B}_{T} of all elements in $[-I, I] \alpha+[1, J] \beta$ in a few milliseconds.

Shortcomings: it is not very efficient for higher degrees $(n \geqslant 7)$ or too small discriminant.

2.5 General organization

The general algorithm is as Function algsieve shown below. The logarithm of archimedean embeddings is described in the next paragraph.

Input: $K, T, \mathcal{B}_{T},\left\{C_{\mathfrak{p}}\right\},\left\{C_{\mathfrak{p}, r}\right\}, S \subset \mathcal{B}_{T}$
Output: Some elements of K factorizable over \mathcal{B}_{T}
$R \leftarrow \emptyset ;$
$I \leftarrow\left\lfloor T \log \log \left|\Delta_{K}\right|\right\rfloor ;$
$J \leftarrow\left\lfloor\log \left|\Delta_{K}\right|\right\rfloor ;$
$l_{0} \leftarrow \frac{1}{2} \log T ;$
$N \leftarrow$ random_norm;
for $\mathcal{I} \in\left\{\mathcal{O}_{K}\right\} \cup S$ do
$B \leftarrow \operatorname{LLL}(\mathcal{I}, N) ;$
$\alpha \leftarrow B[1] ;$
$\beta \leftarrow B[2]$;
if α is factorizable over \mathcal{B}_{T} then
$R \leftarrow R \cup\{\alpha\} ;$
end
$M \leftarrow(\alpha \mid \beta)$;
$L \leftarrow \operatorname{logarch}(K, \alpha, \beta, I, J)$;
for $\mathfrak{p} \in \mathcal{B}_{T}$ do
$[a, b, 0, c] \leftarrow \operatorname{ker} C_{\mathrm{p}} M \bmod p ;$ $\left[a_{r}, b_{r}, 0, c_{r}\right] \leftarrow \operatorname{ker} C_{\mathfrak{p}, r} M \bmod p^{r} ;$ for $j=c$ to J step c do
for $i=-I+((I+b j) \% a)$ to I step a do if Lucky case and $i \equiv j a_{r}\left(\bmod p^{2}\right)$ then $L[i, j] \leftarrow L[i, j]-\min \left(r, v_{p}\left(i-j a_{r}\right)\right) \log \mathrm{N} \mathfrak{p} ;$ else $L[i, j] \leftarrow L[i, j]-\log \mathrm{N} \mathfrak{p} ;$ end
end
end
end
for $-I \leqslant i \leqslant I$ do
for $1 \leqslant j \leqslant J$ do
if $L[i, j] \leqslant l_{0}$ then
if $i \alpha+j \beta$ is factorizable over \mathcal{B}_{T} then
$R \leftarrow R \cup\{i \alpha+j \beta\} ;$
end
end
end
end
end
return R;

2.6 Archimedean embedding

We used the following method to compute all $L[x, y] \simeq \log \left|\mathrm{N} K_{\mathbf{Q}}(x \alpha+y \beta)\right|$. First, observe that

$$
L[x, y]=n \log y+\log \left|P\left(\frac{x}{y}\right)\right| \quad \text { where } \quad P(x)=\mathrm{N}_{K / \mathbf{Q}}(x \alpha+\beta) .
$$

To compute $f(t)=\log |P(t)|$ we observe that

$$
f^{\prime}(t)=\frac{P^{\prime}(t)}{P(t)}
$$

and thus that f^{\prime} changes sign where exactly one of P or P^{\prime} changes sign.
We compute their square-free factorization of $Q_{1}=\frac{P}{\operatorname{gcd}\left(P, P^{\prime}\right)}$ and $Q_{2}=\frac{P^{\prime}}{\operatorname{gcd}\left(P, P^{\prime}\right)}$. We thus have

$$
\begin{aligned}
P & =\operatorname{gcd}\left(P, P^{\prime}\right) \prod_{i=1}^{k} Q_{i}^{v_{i}} \\
P^{\prime} & =\operatorname{gcd}\left(P, P^{\prime}\right) \prod_{i=k+1}^{k+l} Q_{i}^{v_{i}}
\end{aligned}
$$

We then compute the real zeros of the Q_{i} 's such that v_{i} is odd, using Uspensky method. These are the points $\left\{t_{i}\right\}$ where f^{\prime} changes sign.

As a further optimization, observe that, if $\frac{\beta}{\alpha}$ is of degree n, then P changes sign at the real archimedean embeddings of $-\frac{\beta}{\alpha}$ thus we can save the computation of the real roots of P. If instead $\frac{\beta}{\alpha}$ is of degree lower than n then P is a power and Uspensky method is way faster.

We substitute the t_{i} with their best approximations from below and from above with rational numbers of denominators at most J and add $-I$ and I to the list. Then $f(t)$ is monotonous on each $\left[t_{i}, t_{i+1}\right]$. On the segment $\left[t_{i}, t_{i+1}\right]$ we compute $f(t)$ by dichotomy: we compute an approximation of $f(t)$ by linear interpolation if $\left|f\left(t_{i}\right)-f\left(t_{i+1}\right)\right| \leqslant 2$ and cut the segment in half otherwise. As we can expect, we compute a lot of approximations of f near the roots of P.

The result is excellent: the error on the computation of the log of the norm is lower, usually much lower, than 2 .

The slowest part is the computation of the real roots of P^{\prime} and can become a significant part of the whole sieve if n is above 4 . To dilute the problem we cannot take I and J too small.

The corresponding algorithm is given as Function logarch below.

Input: K, α, β, I and J
Output: A table L such that for $-I \leqslant x \leqslant I$ and $1 \leqslant y \leqslant J$,

$$
L[x, y] \simeq \log \left|\mathrm{N}_{K / \mathbf{Q}}(x \alpha+y \beta)\right|
$$

$L \leftarrow \operatorname{array}(I, J)$;
2 $P \leftarrow \mathrm{~N}(x \alpha+\beta)$;
3 $P 1 \leftarrow P^{\prime}$;
$4 D \leftarrow(P, P 1)$;
$5 P \leftarrow P / D$;
6 $P 1 \leftarrow P 1 / D$;
$7 T \leftarrow$ concat(realroots(SQFF of P), realroots(SQFF of P1));
$8 T \leftarrow$ bestapprs (T, J);
$T \leftarrow \operatorname{concat}([[-I], T,[I]])$;
$A \leftarrow \operatorname{array}(\# T) ;$
$A[1] \leftarrow \log |P(T[1])| ;$
for $2 \leqslant i \leqslant \# T$ do $A[i] \leftarrow \log |P(T[i])| ;$ while $|A[i]-A[i-1]|>2$ do

Increase the size of T and A;
$T[(i+1) . . \# T]=T[i . .(\# T-1)] ;$
$T[i] \leftarrow \frac{T[i-1]+T[i]}{2} ;$
$A[i] \leftarrow \log |P(T[i])| ;$
end
end
for $1 \leqslant j \leqslant J$ do
$[k, r, d r] \leftarrow[0,0,0] ;$
for $-I \leqslant i \leqslant I$ do
$r \leftarrow r+d r ;$
while $k<\# T$ and $\frac{i}{j} \geqslant T[k+1]$ do
$k \leftarrow k+1 ;$
$d r \leftarrow \frac{A[k+1]-A[k]}{j(T[k+1]-T[k])} ;$ $r \leftarrow n \log j+A[k]+(i-j \cdot A[k]) d r ;$

end

$L[i, j] \leftarrow r ;$
end
end
return L
Function logarch (K, α, β, I, J)

