A BRUMER-STARK CONJECTURE FOR GALOIS EXTENSIONS

X.-F. Roblot

Institut Camille Jordan Université Claude Bernard – Lyon 1

Joint work with G. Dejou

K/k abelian extension of number fields

 $G = \operatorname{Gal}(K/k)$, its Galois group

 $S \subset \mathsf{Pl}(k)$ finite, containing $\mathsf{Pl}_{\infty}(k)$ and $\mathsf{Pl}_{\mathsf{ram}}(K/k)$

For $\chi \in \hat{G}$, $L_{K/k,S}(s,\chi) = \prod_{\mathfrak{p} \notin S} (1 - \chi(\sigma_{\mathfrak{p}})\mathcal{N}\mathfrak{p}^{-s})^{-1}$ (Hecke *L*-function)

The Brumer-Stickelberger element $\theta_{K/k,S} := \sum_{\chi \in \hat{G}} L_{K/k,S}(0, \bar{\chi}) e_{\chi}$ The Brumer-Stickelberger element is the only element of $\mathbb{C}[G]$ such that

$$\chi(\theta_{K/k,S}) = L_{K/k,S}(0,\bar{\chi}), \ \forall \chi \in \hat{G}$$

Let
$$v\in S$$
 and let $N_v=\sum\limits_{\sigma\in D_v}\sigma.$ Then
$$N_v\cdot\theta_{K/k,S}=0$$

In particular, if there exists $v \in S$ totally split, then $\theta_{K/k,S} = 0$.

Let \mathfrak{p} be a prime ideal of k not in S. Then

$$\theta_{K/k,S\cup\{\mathfrak{p}\}} = \theta_{K/k,S} \cdot (1 - \sigma_{\mathfrak{p}}^{-1})$$

For all $\xi \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$, we have $\xi \cdot \theta_{K/k,S} \in \mathbb{Z}[G]$

The Brumer-Stark Conjecture $\mathbf{BS}(K/k, S)$ Let $w_K := |\mu_K|$. We have

 $w_K \, \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K)$

Furthermore, for any fractional ideal ${\mathfrak A}$ of K, there exists $\alpha \in K^{\times}$ with

 $\left. \begin{array}{l} \bullet \ \mathfrak{A}^{w_K \theta_{K/k,S}} = (\alpha) \\ \bullet \ \alpha \in K^{\circ} \\ \bullet \ K(\alpha^{1/w_K})/k \text{ is abelian} \end{array} \right\} \mathbf{BS}(K/k,S;\mathfrak{A})$

Remarks.

- $K^{\circ} := \{x \in K^{\times} : |x|_w = 1, \forall w \in \mathsf{Pl}_{\infty}(k)\}$ (anti-units)
- If K not totally complex or k not totally real, then $\theta_{K/k,S} = 0$.

For \mathfrak{A} be a fractional ideal of K, $\mathbf{BS}(K/k, S; \mathfrak{A})$ is equivalent to

- There exists an extension L/K such that L/k is abelian and an anti-unit $\gamma \in L^{\circ}$ such that $(\mathfrak{AO}_L)^{\theta_{K/k,S}} = \gamma \mathcal{O}_L$.
- For almost all prime ideals \mathfrak{p} of k, there exists $\alpha_{\mathfrak{p}} \in K^{\circ}$ such that $\mathfrak{A}^{(\sigma_{\mathfrak{p}}-\mathcal{N}(\mathfrak{p}))\theta_{K/k,S}} = \alpha_{\mathfrak{p}}\mathcal{O}_{K}$ and $\alpha_{\mathfrak{p}} \equiv 1 \pmod{\mathfrak{P}\mathcal{O}_{K}}$.
- There exist a family $(a_i)_{i \in I}$ of element of $\mathbb{Z}[G]$ generating $\operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$ and a family $(\alpha_i)_{i \in I} \subset K^\circ$ such that $\mathfrak{A}^{a_i\theta_{K/k,S}} = \alpha_i \mathcal{O}_K$ and $\alpha_i^{a_j} = \alpha_j^{a_i}$ for all $i, j \in I$.

The set $\{\mathfrak{A} : \mathbf{BS}(K/k, S; \mathfrak{A}) \text{ is true}\}\$ is a group stable under the action of G that contains the principal ideals of K.

Assume $k \subset F \subset K$. Then $\mathbf{BS}(K/k, S) \implies \mathbf{BS}(F/k, S)$.

 $\mathbf{BS}(K/k,S)$ is true in the following cases

- $k = \mathbb{Q}$. [Stickelberger theorem]
- K is principal. [Tate]
- K/k of degree 4 contained in K/k_0 Galois but not abelian of degree 8. [Tate]
- G is of exponent 2 (+ some technical conditions). [Sands]
- Many numerical cases with k of degree $2,\,3$ or 4. [Greither, R., Tangedal]

Base change [Hayes]. Let K/k'/k abelian.

 $\text{Then } \mathbf{BS}(K/k,S) \implies \mathbf{BS}(K/k',S') \text{ with } S' := \{v' \in \mathrm{Pl}(k') : v'_{|k} \in S\}.$

A Brumer-Stark conjecture for Galois extensions - The (abelian) Brumer-Stark conjecture: the local conjecture

The local Brumer-Stark Conjecture $\mathbf{BS}^{(\ell)}(K/k, S)$ Let $w_{K,\ell}$ be the ℓ -part of w_K . We have

 $w_K \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K\{\ell\})$

Furthermore, for \mathfrak{A} with $[\mathfrak{A}] \in \operatorname{Cl}_K\{\ell\}$, there exists $\alpha \in K^{\times}$ with

•
$$\mathfrak{A}^{w_K \theta_{K/k,S}} = (\alpha)$$

• $\alpha \in K^\circ$
• $K(\alpha^{1/w_{K,\ell}})/k$ is abelian

We have $\mathbf{BS}(K/k,S) \iff \mathbf{BS}^{(\ell)}(K/k,S) \ \forall \ell$

Proved in many cases of degree 2p [Greither, R., Tangedal; Smith].

 $\mathbf{BS}^{(\ell)}(K/k, S)$ is proved for $\ell \neq 2$ by Popescu-Greither provided the adequate lwasawa μ -invariant vanishes.

In order to generalize the Brumer-Stark conjecture to the Galois case, we need to generalize the following:

The Brumer-Stickelberger element: $heta_{K/k,S} := \sum_{\chi \in \hat{G}} L_{K/k,S}(0,ar{\chi}) e_{\chi}$

The Brumer part: $w_K \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K)$

The Stark part: $\mathfrak{A}^{w_K\theta_{K/k,S}} = (\alpha)$ with $\alpha \in K^\circ$ and $K(\alpha^{1/w_K})/k$ abelian

(Another generalization in a different direction has been done by A. Nickel)

We assume from now on that K/k is a Galois extension with group G.

After Hayes, define

$$\theta_{K/k,S} := \sum_{\chi \in \hat{G}} L_{K/k,S}(0,\bar{\chi}) \, e_{\chi} \in Z(\mathbb{C}[G])$$

where \hat{G} is the set of irreducible characters of G and

$$e_{\chi} := \frac{\chi(1)}{|G|} \sum_{g \in G} \bar{\chi}(g) g$$

are the idempotents of $Z(\mathbb{C}[G])$.

Clearly, we recover the previous definition of $\theta_{K/k,S}$ when K/k is abelian.

Recall the properties of the Brumer-Stark element in the abelian case.

The Brumer-Stickelberger element is the only element of $\mathbb{C}[G]$ such that

$$\chi(\theta_{K/k,S}) = L_{K/k,S}(0,\bar{\chi}), \ \forall \chi \in \hat{G}$$

Let
$$v \in S$$
 and let $N_v = \sum_{\sigma \in D_v} \sigma.$ Then
$$N_v \cdot \theta_{K/k,S} = 0$$

In particular, if there exists $v \in S$ totally split, then $\theta_{K/k,S} = 0$.

Let \mathfrak{p} be a prime ideal of k not in S. Then

$$\theta_{K/k,S\cup\{\mathfrak{p}\}} = \theta_{K/k,S} \cdot (1 - \sigma_{\mathfrak{p}}^{-1})$$

For all $\xi \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$, we have $\xi \cdot \theta_{K/k,S} \in \mathbb{Z}[G]$

Let \mathscr{C} be the set of conjugacy classes of G. Recall that $Z(\mathbb{C}[G]) = \mathbb{C}[C : C \in \mathscr{C}].$

For $\chi \in \hat{G}$, the map $\Phi_{\chi} : Z(\mathbb{C}[G]) \to \mathbb{C}$ defined by $\Phi_{\chi}(C) = \frac{\chi(C)}{\chi(1)}$ is a (ring) homomorphism from $Z(\mathbb{C}[G])$ to \mathbb{C} .

The Brumer-Stickelberger element is the only element of $Z(\mathbb{C}[G])$ such that

$$\Phi_{\chi}(\theta_{K/k,S}) = L_{K/k,S}(0,\bar{\chi}), \ \forall \chi \in \hat{G}$$

A Brumer-Stark conjecture for Galois extensions

LThe Galois Brumer-Stark conjecture: properties of the Brumer-Stickelberger element

Let
$$v \in S$$
 and let $N_v = \sum_{\sigma \in D_w} \frac{1}{C_{\sigma}} |C_{\sigma}| \in Z(\mathbb{C}[G])$ where $w \mid v$ and C_{σ} is the conjugacy class of σ . Then

$$N_v \cdot \theta_{K/k,S} = 0$$

In particular, if there exists $v \in S$ totally split, then $\theta_{K/k,S} = 0$.

Furthermore, for all complex conjugation τ in G, we also have

 $(1+\tau) \cdot \theta_{K/k,S} = 0$

Let \mathfrak{p} be a prime ideal of k not in S. Then

$$\theta_{K/k,S\cup\{\mathfrak{p}\}} = \theta_{K/k,S} \cdot \sum_{\chi \in \hat{G}} \det(1 - \rho_{\chi}(\sigma_{\mathfrak{p}})) e_{\bar{\chi}}$$

It follows from the principal rank zero Stark conjecture (proved by Tate) that

$$\theta_{K/k,S} \in \mathbb{Q}[G]$$

Explicit examples show that $w_K \theta_{K/k,S} \notin \mathbb{Z}[G]$ in general...

We make the following assumption:

Let $m_G := \lim_{C \in \mathscr{C}} |C|$, then

 $m_G \xi \cdot \theta_{K/k,S} \in \mathbb{Z}[G], \ \forall \xi \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mu_K)$

Note that $m_G = 1$ if and only if G is abelian.

```
The Galois Brumer-Stark Conjecture \mathbf{BS}_{Gal}(K/k,S)
We have
```

```
m_G w_K \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K)
```

Furthermore, for any fractional ideal ${\mathfrak A}$ of K, there exists $\alpha \in K^{\times}$ with

• $\mathfrak{A}^{m_G w_K \theta_{K/k,S}} = (\alpha)$ • $\alpha \in K^\circ$ • ...

What about the "abelian condition"?

(Recall that it is conjectured that $K(\alpha^{1/w_K})/k$ is abelian when K/k is abelian.)

Consider G as a finite group. A group extension

is central if $\Delta < Z(\Gamma)$.

Let

$$[\Gamma,\Gamma] := \langle \underbrace{\gamma_0 \gamma_1 \gamma_0^{-1} \gamma_1^{-1}}_{=:[\gamma_0,\gamma_1]} : \gamma_0, \gamma_1 \in \Gamma \rangle$$

be the commutator subgroup of Γ .

We say the above extension is strong central if $\Delta \cap [\Gamma, \Gamma] = 1$.

Let Γ be a group extension of G by Δ , that is

$$1 \longrightarrow \Delta \longrightarrow \Gamma \xrightarrow{s} G \longrightarrow 1.$$

We have

- If the extension is strong central then it is central. Proof. Let $\delta \in \Delta$ and $\gamma \in \Gamma$, $s([\gamma, \delta]) = 1$ thus $[\gamma, \delta] \in \Delta$ and $[\gamma, \delta] = 1$.
- The extension is strong central iff, for any H < G with H abelian, $s^{-1}(H)$ is abelian.

Proof. Assume strong central. For $\gamma, \gamma' \in s^{-1}(H)$, $s([\gamma, \gamma']) = 1$ so $[\gamma, \gamma'] = 1$ and $s^{-1}(H)$ is abelian. (Other direction: exercise!)

• If the extension is strong central then $m_{\Gamma} = m_G$.

In particular, for Γ a strong central extension of G by Δ , the group Γ is abelian if and only if G is abelian.

Go back to our situation: K/k is a Galois extension with group G.

An extension L of K is a strong central extension of K/k if L/k is Galois and $\Gamma := \operatorname{Gal}(L/k)$ is a strong central extension of G by $\Delta := \operatorname{Gal}(L/K)$.

Let L^{ab} be the maximal sub-extension of L/k that is abelian over k. Then L is a strong central extension of K/k if and only if L/k is Galois and $L = KL^{ab}$.

Furthermore, if L is strong central extension of K/k then $\operatorname{Gal}(L/K) \cong \operatorname{Gal}(L^{\mathrm{ab}}/K^{\mathrm{ab}})$.

The Galois Brumer-Stark Conjecture $\mathbf{BS}_{Gal}(K/k, S)$

We have

$$m_G w_K \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K)$$

Furthermore, for any fractional ideal ${\mathfrak A}$ of K, there exists $\alpha \in K^{\times}$ with

 $\left. \begin{array}{l} \bullet \ \mathfrak{A}^{m_G w_K \theta_{K/k,S}} = (\alpha) \\ \bullet \ \alpha \in K^{\circ} \\ \bullet \ K(\alpha^{1/w_K}) \text{ is a strong central} \\ \text{extension of } K/k \end{array} \right\} \mathbf{BS}_{\mathrm{Gal}}(K/k, S; \mathfrak{A})$

When K/k is abelian, we have $\mathbf{BS}(K/k, S) \iff \mathbf{BS}_{Gal}(K/k, S)$.

For \mathfrak{A} be a fractional ideal of K, $\mathbf{BS}_{Gal}(K/k, S; \mathfrak{A})$ is equivalent to

- There exists an extension L/K such that L is a strong central extension of K/k and $\gamma \in L^{\circ}$ with $(\mathfrak{AO}_L)^{m_G \,\theta_{K/k,S}} = \gamma \mathcal{O}_L$.
- **2** For almost all prime ideals \mathfrak{P} of K, there exists $\alpha_{\mathfrak{P}} \in K^{\circ}$ such that $\mathfrak{A}^{m_{G}(\sigma_{\mathfrak{P}}-\mathcal{N}(\mathfrak{p}))\theta_{K/k,S}} = \alpha_{\mathfrak{P}}\mathcal{O}_{K}$ and $\alpha_{\mathfrak{P}} \equiv 1 \pmod{*} \mathfrak{Q}$ for all $\mathfrak{Q} \mid \mathfrak{p}$ with $\sigma_{\mathfrak{Q}} = \sigma_{\mathfrak{P}}$.
- For all H < G, abelian, there exist a family $(a_i)_{i \in I}$ of element of $\mathbb{Z}[H]$ generating $\operatorname{Ann}_{\mathbb{Z}[H]}(\mu_K)$ and a family $(\alpha_i)_{i \in I} \subset K^\circ$ such that $\mathfrak{A}^{m_G a_i \theta_{K/k,S}} = \alpha_i \mathcal{O}_K$ and $\alpha_i^{a_j} = \alpha_j^{a_i}$ for all $i, j \in I$.

The set $\{\mathfrak{A} : \mathbf{BS}_{Gal}(K/k, S; \mathfrak{A}) \text{ is true}\}\$ is a group stable under the action of G that contains the principal ideals of K.

The local Galois Brumer-Stark Conjecture $\mathbf{BS}^{(\ell)}_{\mathrm{Gal}}(K/k,S)$ Let $w_{K,\ell}$ be the ℓ -part of w_K . We have

 $m_G w_K \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K\{\ell\})$

Furthermore, for \mathfrak{A} with $[\mathfrak{A}] \in \operatorname{Cl}_K{\ell}$, there exists $\alpha \in K^{\times}$ with

- $\mathfrak{A}^{m_G w_K \theta_{K/k,S}} = (\alpha)$
- $\alpha \in K^{\circ}$
- $K(\alpha^{1/w_{K,\ell}})$ is a strong central extension of K/k

We have $\mathbf{BS}_{Gal}(K/k, S) \iff \mathbf{BS}_{Gal}^{(\ell)}(K/k, S) \ \forall \ell$

Consider K'/k a Galois sub-extension of K/k with group G'.

Let ℓ such that one at least of the following conditions is true:

- $\ell \nmid w_K$,
- $m_G w_K \theta_{K'/k,S} \notin \ell \mathbb{Z}[G']$,
- there is no abelian sub-extension of $K/K'K^{\rm ab}$ of degree ℓ unramified outside of $w_K.$

Then

$$\mathbf{BS}^{(\ell)}_{\mathrm{Gal}}(K/k,S) \implies \tilde{\mathbf{BS}}^{(\ell)}_{\mathrm{Gal}}(K'/k,S)$$

where $\tilde{\mathbf{BS}}_{Gal}^{(\ell)}(K'/k, S)$ is $\mathbf{BS}_{Gal}^{(\ell)}(K'/k, S)$ with $m_{G'}$ replaced by m_G . (One proves easily that $m_{G'}$ divides m_G .) We assume that there exists H < G, abelian, with (G : H) = p.

We have

$$\begin{split} \theta_{K/k,S} &= \frac{1}{|[G,G]|} (\theta_{K^{\mathrm{ab}}/k,S} N_{K/K^{\mathrm{ab}}} - \theta_{K^{\mathrm{ab}}/K^{H},S_{H}} N_{K/K^{\mathrm{ab}}}) \\ &\quad + \theta_{K/K^{H},S_{H}} \\ \text{where } S_{H} &:= \{ w \in \mathrm{Pl}(K^{H}) : w_{|k} \in S \}. \\ \text{In this case, } |[G,G]| \mid m_{G}, \text{ thus } m_{G} \xi \cdot \theta_{K/k,S} \in \mathbb{Z}[G], \\ \text{for all } \xi \in \mathrm{Ann}_{\mathbb{Z}[G]}(\mu(K)). \end{split}$$

v

A Brumer-Stark conjecture for Galois extensions - The Galois Brumer-Stark conjecture: abelian subgroup of prime index (odd case)

Recall that

$$\theta_{K/k,S} = \frac{1}{|[G,G]|} (\theta_{K^{\rm ab}/k,S} N_{K/K^{\rm ab}} - \theta_{K^{\rm ab}/K^{\rm H},S_{\rm H}} N_{K/K^{\rm ab}}) + \theta_{K/K^{\rm H},S_{\rm H}}$$

If H is of odd order then K^{H} is not totally real and

$$\theta_{K^{\rm ab}/K^H,S_H} = \theta_{K/K^H,S_H} = 0.$$

We prove that $\mathbf{BS}(K^{\mathrm{ab}}/k, S) \implies \mathbf{BS}_{\mathrm{Gal}}(K/k, S).$

Consequence. **BS**_{Gal}(K/k, S) is true if $G \simeq D_n$ with n odd.

A Brumer-Stark conjecture for Galois extensions - The Galois Brumer-Stark conjecture: abelian subgroup of prime index (even case)

Recall that
$$\theta_{K/k,S} = \frac{1}{|[G,G]|} (\theta_{K^{ab}/k,S} N_{K/K^{ab}} - \theta_{K^{ab}/K^H,S_H} N_{K/K^{ab}}) + \theta_{K/K^H,S_H} N_{K/K^{ab}}) + \theta_{K/K^H,S_H} N_{K/K^{ab}} + \theta_{K/K^{ab}} + \theta_$$

Assume H is of even order and that $\mathbf{BS}(K^{ab}/k, S)$ and $\mathbf{BS}(K/K^H, S_H)$ hold (thus also $\mathbf{BS}(K^{ab}/K^H, S)$). Then

 $m_G w_K \, \theta_{K/k,S} \in \operatorname{Ann}_{\mathbb{Z}[G]}(\mathsf{Cl}_K)$

And, for any fractional ideal ${\mathfrak A}$ of K, there exists $\alpha \in K^{\times}$ with

•
$$\mathfrak{A}^{m_G w_K \theta_{K/k,S}} = (\alpha)$$

• $\alpha \in K^{\circ}$

• $K(\alpha^{1/w_K})/K^H$ is abelian

Consequence. **BS**_{Gal}(K/k, S) is true if G is non-abelian of order 8.