
.

The new ellinit

Karim Belabas

http://pari.math.u-bordeaux.fr/

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 1/10



The old ellinit (1/3)

E = ellinit([a1,a2,a3,a4,a6], flag = 0);

E = ellinit([a4,a6]);

returns an ell structure associated to E/K (K inferred from coefficients), passed as a first

argument to elliptic curves functions. It is a vector containing:

the curve coefficients and standard simple invariants (b2, b4, b6, b8, c4, c6, ∆, j)

approximations to [e1, e2, e3], [ω1, ω2, η1, η2] if the ai are real (realprecision).

approximations to [e1, u, u
2, q, w] if the ai belong to Qp if the ai are t_PADIC (precision

of the ai).

The flag allows not to compute the extended “domain-specific” components.

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 2/10



The old ellinit (2/3)

Drawbacks :

Prime finite fields are somewhat supported (simple operations, no useful data stored)

Non-prime finite fields are almost unsupported: point counting not even possible.

t_PADIC supported only for vp(j) < 0 (Tate curve), p 6= 2.

t_COMPLEX unsupported (type error in gsigne)

No other domains are supported. Functions individually try to guess the base field by

considering type(j) or type(∆) and act according to this, sometimes surprisingly

(ellisoncurve for non exact input?)

inexact data in ell structure is cached at an accuracy which is fixed at the time of ellinit

call, and cannot be later updated.

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 3/10



The old ellinit (3/3)

Major problems :

Useful data not cached (reduced period lattice basis, #E(Fp), conductor and reduction

type); useless data data included (E.area, E.w, η1, η2, the latter two being very

expensive when realprecision is large). How to specify that some data must be

precomputed, and some should not, depending on later applications?

No way to specify a curve E/K and consider it over an extension. New functions for curves

over E/Fq can’t even be exported to GP in this model ⇒ ellffinit, a new data type

specific to curves over finite fields.

Painful to change or extend (compatibility), cached data should depend on base field. And we

would like to allow Fq , Q, R, C, number field K , Qp, local field Kv . . .

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 4/10



Restart from scratch, new ellinit (1/1)

E = ellinit([a1,a2,a3,a4,a6], D);

E = ellinit([a4,a6], D);

where D encodes the “domain” over which we consider E. The result is mostly an empty shell: it

includes only

the standard simple invariants,

the domain D, and a default accuracy for inexact data,

cheap static domain-specific data (e.g. a morphism to a nice canonical model),

dynamic domain-specific data, to be computed later, when and if needed. Any non-trivial

information may (and will) be stored, when computed.

if input is exact, E is exact; allowing to later compute approximate data to arbitrary accuracy.

return approximate data at the accuracy requested by the user (realprecision) at the

time of the call. If cached data too imprecise, recompute to higher accuracy and cache new

value (same as Pi)

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 5/10



Restart from scratch, new ellinit (2/2)

Bug fixes (in progress) :

non-prime finite fields are now fully supported.

curves over Qp are supported, for all p, and all reduction type.

over Qp (if multiplicative reduction), ellpointtoz now distinguishes between P and −P ;

we really return the parameter t in Qp2/q
Z, not t+ 1/t as before. The result lives in Qp2

when the reduction is not split. Apparently, there remains a bug in the program since the

result is sometimes obviously wrong.

over Qp (if multiplicative reduction), ellztopoint still not implemented.

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 6/10



Remaining Problems (1/1)

Data structure implementation and API, see Records and Lazy vectors in

libpari.dvi.

Problem 1 : in GP, inserting new data into existing structures must be done via clones,

inducing memory leaks when the structure is not stored into a GP variable: e.g.

ap = ellap(ellinit([1,1], Mod(1,p)))

instead of.

E = ellinit([1,1], Mod(1,p));

ap = ellap(E);

I see no good solution yet, besides telling GP users not to do this. Only storing data if struct is

stored into a GP variable (as GP lists do) prevents library use! (Not a problem for lists, which are

useless in library mode.)

Problem 2 : in libpari, such objects must be explicitly destroyed (obj_free) to avoid

memory leaks. must

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 7/10



Remaining Problems (1/2)

Problem 3 : member function are not passed realprecision: use default precision

(ellperiods(E) solves this by increasing that default precision in E). No way yet to do the

same for p-adics: elltateparametrization(E) to be implemented. Maybe an

ellnewprec, rather ?

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 8/10



What next ? (1/1)

Need to implement new domains: number fields, local fields (say, completions of number fields);

need to implement new methods (e.g. Tate reduction and formal groups over local fields).

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 9/10



What next ? (1/1)

Need to implement new domains: number fields, local fields (say, completions of number fields);

need to implement new methods (e.g. Tate reduction and formal groups over local fields).

Number fields ? Merging nf and bnf structures seems indicated: nfinit would compute trivial

invariants, anything non-trivial would be computed on demand. No function would need to require

a bnf. One should never have to restart a computation because some useful flag was omitted at

initialization time: the missing data should be computed on the fly and inserted into the structure.

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 9/10



What next ? (2/2)

This is all very nice if we know that the variable value contains an elliptic curve. It would be nicer if

we could “tag” a GEN so that it “knows” it is an elliptic curve. Then we wouldn’t have to rely on

checking external type (t_VEC vs. t_COL, etc.) or lengths and making educated guesses. It also

becomes trivial to implement

(08:58) gp > ?E

E is an elliptic curve defined over Q

(08:58) gp > ??E

E is the elliptic curve 15a1 defined over Q:

Y 2 + (X + 1) ∗ Y = X3 +X2 − 10 ∗X − 10

E(Q) = []

(08:58) gp > ?K

K is a number field

IMB, Atelier PARI/GP 2013 (18/01/2013) – p. 10/10


