
.

Tutorial: using libpari in GP scripts

Karim Belabas

http://pari.math.u-bordeaux.fr/

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 1/5



Looking for the right GP function

E.g. Hensel lifts:

users.dvi

???keyword

pari-users@pari.math.u-bordeaux.fr

pari-dev@pari.math.u-bordeaux.fr

???Hensel

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 2/5



Looking for the right GP function

E.g. Hensel lifts:

users.dvi

???keyword

pari-users@pari.math.u-bordeaux.fr

pari-dev@pari.math.u-bordeaux.fr

???Hensel

But we can as well inspect what libpari provides

???keyword@

libpari.dvi

??"Hensel lifts"@

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 2/5



An example: p-adic square root

sqrt(2+O(7^30))

install(Zp_sqrtlift,GGGL)

Zp_sqrtlift(2,3,7,30)

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 3/5



How does install(name, code) work ?

it opens the running gp program, as loaded in memory: dlopen(NULL,) (exposes all of

libpari);

it looks for a symbol matching the name: dlsym(, name), returns the address of some

machine code in memory;

it associates a “prototype” to the symbol (expected arguments and return type), and records

this data in the parser table.

from that point on, a new GP function is available, to call a libpari function as if it had been

built-in into the interpreter.

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 4/5



How does install(name, code) work ?

it opens the running gp program, as loaded in memory: dlopen(NULL,) (exposes all of

libpari);

it looks for a symbol matching the name: dlsym(, name), returns the address of some

machine code in memory;

it associates a “prototype” to the symbol (expected arguments and return type), and records

this data in the parser table.

from that point on, a new GP function is available, to call a libpari function as if it had been

built-in into the interpreter.

N.B. We can load symbols from other libraries, and give them arbitrary names in GP

install(big_factors_C,"GGG","issmooth","./libbig_factors.so");

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 4/5



How does install(name, code) work ?

it opens the running gp program, as loaded in memory: dlopen(NULL,) (exposes all of

libpari);

it looks for a symbol matching the name: dlsym(, name), returns the address of some

machine code in memory;

it associates a “prototype” to the symbol (expected arguments and return type), and records

this data in the parser table.

from that point on, a new GP function is available, to call a libpari function as if it had been

built-in into the interpreter.

N.B. We can load symbols from other libraries, and give them arbitrary names in GP

install(big_factors_C,"GGG","issmooth","./libbig_factors.so");

From a user’s point of view, this can remain black magic. The only difficulty is to provide the correct

prototype: it can (mostly) be inferred from the C prototype, as documented in libpari.dvi.

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 4/5



Prototypes (simplified)

First character i, l, v : return type int / long / void. (Default: GEN)

One letter for each mandatory argument: G (GEN), & (GEN*), L (long), n (variable)

p to supply realprecision, P to supply seriesprecision.

Special constructs for optional arguments and default values:

DG (optional GEN, NULL if omitted),

D& (optional GEN*, NULL if omitted),

Dn (optional variable, −1 if omitted),

GEN Zp_sqrtlift(GEN b, GEN a, GEN p, long e)=⇒ GGGL

IMB, Atelier PARI/GP 2013 (16/01/2013) – p. 5/5


