Computing modular Galois representations
An implementation of the finite field approach

Peter Bruin

Universiteit Leiden

Ny O

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Atelier PARI/GP 2015
Bordeaux, 15 January 2015

Introduction

Let X be a (smooth, complete, geometrically connected) curve of genus ¢

over a finite field k.

Consider the Picard group

Pic’ X = {divisors of degree 0} /{principal divisors}
= {line bundles of degree 0} /==.

This is also the group of k-rational points of the Jacobian variety J of X,

which is an Abelian variety of dimension g over k.

Goal: compute efficiently in Pic” X = J(k) if g is large.

What we want to do

e Represent X, divisors on X and elements of J (k)

e Perform group operations in J (k)

e Pick random elements of X (k) and J(k)

e Evaluate the Frobenius automorphism of J (k') for finite extensions k' /k
e Evaluate Kummer maps J(k)/nJ(k) — J(k)|[n]

e Evaluate Frey—Riick (Tate) pairings J(k)|[n| x J(k)/nJ (k) — pun(k)

Using these operations, one can find a basis of J(k)[l], with [# chark a
prime number, in time polynomial in ¢, log #k and [, provided we know the

zeta function of X .

Possible approaches

Various approaches have been developed for computing in Pic® X, based on

different ways to represent X and divisors on it:

(1) as a (ramified) covering of P! :

(2) as a curve in P? (necessarily singular for general X);

(3) by an embedding into a projective space of relatively high dimension.

We will only consider the third approach. There exist efficient algorithms, due
in the first place to K. Khuri-Makdisi (2004) and extended in my thesis (2010).

Khuri-Makdisi’s methods are tailored for modular curves. For example, if n > 5
the required representation of X1 (n) over k£ can be obtained from a basis of

q-expansions for the space of modular forms of weight 2 for I'1(n) over k.

How to represent X

Following Khuri-Makdisi, we choose a line bundle £ on X with
deg L > 2g + 1.

Let I'(X, £) denote its space of global sections. (For us, this is just a space

of modular forms.)

Besides I'(X, L), we store the spaces I'(X, £?) for 1 < ¢ < 7 and the

multiplication maps between them.
This gives a representation of X in terms of linear algebra.

Remark: We never need to write down equations (although they are implicit in

the data and can be extracted if needed).

How to represent points

We represent points on X by hyperplanesin I'(X, L):to z € X we asso-
ciate the subspace

Vo= {f €T(X.L) | f(z) = 0} C T(X,L).
This construction gives a projective embedding

X — PI'(X, L)

x— V..

Remark: after choosing a basis (fo,..., fn) of I'(X, L), this embedding

looks like
X — Py

x = (folz): fi(x) ... 0 folz)).
However, we prefer to represent = by the hyperplane V,, C I'(X, £) rather
than by a vector.

How to represent divisors

Similarly, we represent effective divisors 1D on X by subspaces of the form

= {f €eT(X,L") | f vanishes on D}

for 4 large enough such that deg L*(—D) > 2g + 1.

Remark: This comes down to embedding the d-th symmetric power Symd X

(variety of effective divisors of degree d) into the Grassmannian variety of sub-
spaces of codimension d in I'(X, £*):

Sym? X — GréT(X, LY.

Computing with divisors

Khuri-Makdisi’s algorithms are based on two fundamental results:

Lemma (multiplication): We can compute ngE from V}) and Vé by

1+ Y/t J
VD—i—E — VD) VE

= span{vw | v € Vf),w - Vé} C I'(X, LHj)

Lemma (division): We can compute V7 from Vé?E and Vé by

R 0 's o NS O

= {v e (X, L) | vV} C V5T

These allow us to add and subtract divisors and to test for linear equivalence.

Computing in the Jacobian

Write
d=degLl (>2g+1).

Elements of J(k) are represented by effective divisors of degree d as follows:

{ effective divisors of degree d on X } — J (k)

D — isomorphism class of L(—D).
Addition and negation in .J can be built up from 0 € J(k) and the operation
addflip: (z,y) — —x — y.

Let z,y € J(k) be represented by effective divisors D, E. Then —x —y is
represented by any effective divisor F' such that £3 (-D—-—F—-F)=0x.

Picking random points and divisors

We would like to pick uniformly random elements from the finite sets X (k)
and J (k).

Algorithm: Choose a uniformly random hyperplane H in PI'(X, £). Com-
pute the set {x1,...,x,} of rational points in H N X . With probability
r/deg L, pick one of the x; ; else start over.

Using a similar approach, we can pick uniformly random prime divisors on X .

Uniformly random effective divisors of a given degree m can be built up from
prime divisors as follows. First select the “decomposition type” (degrees and
multiplicities of prime divisors) of a uniformly random effective divisor of de-
gree m using the zeta function of X . Then pick a uniformly random such
divisor having this decomposition type.

10

Further operations

If £’ is a finite extension of k, we can compute the Frobenius map
F: J(K') = J(k)
by applying the #k -th power map on matrix entries with respect to k -bases.

If n is coprime to char k and J|n] is k -rational, we can compute the Kummer

Isomorphism

K J(k)/nJ(k) = J(k)[n]

coming from Galois cohomology of 0 — J[n] — J = J — 0. Under the
weaker assumption that £ contains the n-th roots of unity, we can compute

the Frey—RuUck (Tate) pairing
L ni J(R)/nd (k) x J(k)[n] = pn (k).

(Based in part on work of Couveignes, transferred to our setting.)

11

Application: computing modular Galois representations

Let f be a normalised Hecke eigenform, let /' be the number field generated
by the coefficients of f, let A be a finite place of K with residue field F .
There are associated semi-simple Galois representations

P Gal(Q/Q) — GLQ(K)\),
ﬁf,)\l Gal(Q/Q) — GLQ(F)\)

We want to compute p¢ » inthe sense of giving a finite Galois extension L/Q
together with an embedding Gal(L/Q) — GLo(F).

If pr.a isirreducible, then after twisting it occurs in J1(n)[{](Q) for a suitable
n, where [= char A and J1(n) is the Jacobian of X1 (n). This allows us to
reduce the problem of computing pr) as follows: given a maximal ideal m of
the Hecke algebra acting on J1 (n), with residue field ', compute J; (n)|[m].

(Project of Couveignes, Edixhoven et al.; “Schoof-like” algorithm.)

12

Application: computing modular Galois representations

We choose a suitable embedding of (Q-schemes
1:J1(n)[m] — A,

Then 1m ¢ is defined by a polynomial over Q; the induced F -vector space

scheme structure on 1m ¢ is also given by polynomials over Q.

Strategy for computing J1(n)|m]: find these polynomials either numerically
over C or modulo p for sufficiently many small prime numbers p, and then

reconstruct im ¢ over Q).

Remark: to know how much precision/now many p we need to ensure correct-
ness, one needs a bound on the heights of the coefficients of the polynomials.

Such a bound can be derived (with a lot of work) if one chooses ¢ carefully.

13

PARI implementation of the finite field approach (work in progress)

The program (ca. 5700 lines of C code using the PARI library) consists of four
modules:

e libpari-extra — various utility functions: linear algebra, finite algebras,

extensions of finite fields (small characteristic, i.e. F1 and F1xq)

e modular — a toy implementation of modular symbols. Hopefully this will
soon be switched to the new PARI msx* functions (main new ingredient needed:
modular symbols for I'1(n)).

® jacobian —general curves over finite fields, Jacobians, operations on them

(using Khuri-Makdisi’s algorithmic representation)
e modgalrep — modular curves and Jacobians; Galois representations

Linear algebra (over finite fields) is currently the main bottleneck.

14

