
Computing modular Galois representations
An implementation of the finite field approach

Peter Bruin

Universiteit Leiden

Atelier PARI/GP 2015

Bordeaux, 15 January 2015

1

Introduction

Let X be a (smooth, complete, geometrically connected) curve of genus g

over a finite field k .

Consider the Picard group

Pic0X = {divisors of degree 0}/{principal divisors}
= {line bundles of degree 0}/∼=.

This is also the group of k -rational points of the Jacobian variety J of X ,

which is an Abelian variety of dimension g over k .

Goal: compute efficiently in Pic0X = J(k) if g is large.

2

What we want to do

• Represent X , divisors on X and elements of J(k)

• Perform group operations in J(k)

• Pick random elements of X(k) and J(k)

• Evaluate the Frobenius automorphism of J(k′) for finite extensions k′/k

• Evaluate Kummer maps J(k)/nJ(k)→ J(k)[n]

• Evaluate Frey–Rück (Tate) pairings J(k)[n]× J(k)/nJ(k)→ µn(k)

Using these operations, one can find a basis of J(k)[l] , with l 6= char k a

prime number, in time polynomial in g , log #k and l , provided we know the

zeta function of X .

3

Possible approaches

Various approaches have been developed for computing in Pic0X , based on

different ways to represent X and divisors on it:

(1) as a (ramified) covering of P1 ;

(2) as a curve in P2 (necessarily singular for general X);

(3) by an embedding into a projective space of relatively high dimension.

We will only consider the third approach. There exist efficient algorithms, due

in the first place to K. Khuri-Makdisi (2004) and extended in my thesis (2010).

Khuri-Makdisi’s methods are tailored for modular curves. For example, if n ≥ 5

the required representation of X1(n) over k can be obtained from a basis of

q -expansions for the space of modular forms of weight 2 for Γ1(n) over k .

4

How to represent X

Following Khuri-Makdisi, we choose a line bundle L on X with

degL ≥ 2g + 1.

Let Γ(X,L) denote its space of global sections. (For us, this is just a space

of modular forms.)

Besides Γ(X,L) , we store the spaces Γ(X,Li) for 1 ≤ i ≤ 7 and the

multiplication maps between them.

This gives a representation of X in terms of linear algebra.

Remark: We never need to write down equations (although they are implicit in

the data and can be extracted if needed).

5

How to represent points

We represent points on X by hyperplanes in Γ(X,L) : to x ∈ X we asso-

ciate the subspace

Vx = {f ∈ Γ(X,L) | f(x) = 0} ⊂ Γ(X,L).

This construction gives a projective embedding

X � PΓ(X,L)

x 7→ Vx.

Remark: after choosing a basis (f0, . . . , fn) of Γ(X,L) , this embedding

looks like
X � Pnk

x 7→ (f0(x) : f1(x) : . . . : fn(x)).

However, we prefer to represent x by the hyperplane Vx ⊂ Γ(X,L) rather

than by a vector.

6

How to represent divisors

Similarly, we represent effective divisors D on X by subspaces of the form

V iD = Γ(X,Li(−D))

= {f ∈ Γ(X,Li) | f vanishes on D}

for i large enough such that degLi(−D) ≥ 2g + 1 .

Remark: This comes down to embedding the d -th symmetric power SymdX

(variety of effective divisors of degree d) into the Grassmannian variety of sub-

spaces of codimension d in Γ(X,Li) :

SymdX � Grd Γ(X,Li).

7

Computing with divisors

Khuri-Makdisi’s algorithms are based on two fundamental results:

Lemma (multiplication): We can compute V i+jD+E from V iD and V jE by

V i+jD+E = V iD · V
j
E

= span{vw | v ∈ V iD, w ∈ V
j
E} ⊂ Γ(X,Li+j)

Lemma (division): We can compute V iD from V i+jD+E and V jE by

V iD = V i+jD+E ÷ V
j
E

= {v ∈ Γ(X,Li) | vV jE ⊆ V
i+j
D+E}.

These allow us to add and subtract divisors and to test for linear equivalence.

8

Computing in the Jacobian

Write

d = degL (≥ 2g + 1).

Elements of J(k) are represented by effective divisors of degree d as follows:

{effective divisors of degree d on X} → J(k)

D 7→ isomorphism class of L(−D).

Addition and negation in J can be built up from 0 ∈ J(k) and the operation

addflip: (x, y) 7→ −x− y.

Let x, y ∈ J(k) be represented by effective divisors D , E . Then −x−y is

represented by any effective divisor F such that L3(−D−E−F) ∼= OX .

9

Picking random points and divisors

We would like to pick uniformly random elements from the finite sets X(k)

and J(k) .

Algorithm: Choose a uniformly random hyperplane H in PΓ(X,L) . Com-

pute the set {x1, . . . , xr} of rational points in H ∩ X . With probability

r/degL , pick one of the xi ; else start over.

Using a similar approach, we can pick uniformly random prime divisors on X .

Uniformly random effective divisors of a given degree m can be built up from

prime divisors as follows. First select the “decomposition type” (degrees and

multiplicities of prime divisors) of a uniformly random effective divisor of de-

gree m using the zeta function of X . Then pick a uniformly random such

divisor having this decomposition type.

10

Further operations

If k′ is a finite extension of k , we can compute the Frobenius map

F : J(k′)
∼−→ J(k′)

by applying the #k -th power map on matrix entries with respect to k -bases.

If n is coprime to char k and J [n] is k -rational, we can compute the Kummer

isomorphism

K: J(k)/nJ(k)
∼−→ J(k)[n]

coming from Galois cohomology of 0 → J [n] → J
n→ J → 0 . Under the

weaker assumption that k× contains the n -th roots of unity, we can compute

the Frey–Rück (Tate) pairing

[,]n: J(k)/nJ(k)× J(k)[n]→ µn(k).

(Based in part on work of Couveignes, transferred to our setting.)

11

Application: computing modular Galois representations

Let f be a normalised Hecke eigenform, let K be the number field generated

by the coefficients of f , let λ be a finite place of K with residue field Fλ .

There are associated semi-simple Galois representations

ρf,λ: Gal(Q/Q)→ GL2(Kλ),

ρ̄f,λ: Gal(Q/Q)→ GL2(Fλ).

We want to compute ρ̄f,λ in the sense of giving a finite Galois extension L/Q

together with an embedding Gal(L/Q) � GL2(Fλ) .

If ρ̄f,λ is irreducible, then after twisting it occurs in J1(n)[l](Q) for a suitable

n , where l = charλ and J1(n) is the Jacobian of X1(n) . This allows us to

reduce the problem of computing ρ̄f,λ as follows: given a maximal ideal m of

the Hecke algebra acting on J1(n) , with residue field F , compute J1(n)[m] .

(Project of Couveignes, Edixhoven et al.; “Schoof-like” algorithm.)

12

Application: computing modular Galois representations

We choose a suitable embedding of Q -schemes

ι: J1(n)[m] � A1
Q.

Then im ι is defined by a polynomial over Q ; the induced F -vector space

scheme structure on im ι is also given by polynomials over Q .

Strategy for computing J1(n)[m] : find these polynomials either numerically

over C or modulo p for sufficiently many small prime numbers p , and then

reconstruct im ι over Q .

Remark: to know how much precision/how many p we need to ensure correct-

ness, one needs a bound on the heights of the coefficients of the polynomials.

Such a bound can be derived (with a lot of work) if one chooses ι carefully.

13

PARI implementation of the finite field approach (work in progress)

The program (ca. 5700 lines of C code using the PARI library) consists of four

modules:

• libpari-extra – various utility functions: linear algebra, finite algebras,

extensions of finite fields (small characteristic, i.e. Fl and Flxq)

• modular – a toy implementation of modular symbols. Hopefully this will

soon be switched to the new PARI ms∗ functions (main new ingredient needed:

modular symbols for Γ1(n)).

• jacobian – general curves over finite fields, Jacobians, operations on them

(using Khuri-Makdisi’s algorithmic representation)

• modgalrep – modular curves and Jacobians; Galois representations

Linear algebra (over finite fields) is currently the main bottleneck.

14

