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Some new GP features

parisizemax (recall from last year)

GP can now increase the stack dynamically to avoid stack
overflow. Set in your . gprc the default parisizemax to the
maximum stack size you can afford. GP will dynamically
increase the stack until it reaches the limit, and reset the stack
size to the default when the computation ends.

? default (parisizemax, "32M")
? bnfinit (x*84+10001) .no
*%% bnfinit: Warning: increasing stack size
to 16000000.
$19 = 81920

threadsizemax is also available for thread stacks.
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64bit Windows support with mingw64

Thanks to Eric Driver it is now possible to build PARI/GP for
64bit Windows using mingw64.

As a result, we now provide 64bit Windows binaries.

It is also possible to build PARI with cygwin64.
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Hexadecimal and binary input

Integers can be input in hexadecimal and binary format with the
prefix 0x and 0b:

? O0xBABECO007
%14 = 3133063175
? 0bl1111

%15 = 31
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Bit precision

GP has support for setting the default precision in bits:

? default (realbitprecision, 100)

or

2 \pbl00

The internal precision of t_REAL is still a multiple of 32/64 bits:

? bitprecision(l.)
%2 = 128
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Bit precision
It is possible to set the precision in bit locally:

? localbitprec(32); bitprecision(l.)
2 = 64

o°

A small number of functions will actually compute the result to
the required precision to be faster:

? localbitprec(100); intnumromb (x=2, 3, zeta (x))
%1 = 1.3675256886839791457066699269000336640
#
* % K last result computed in 180 ms.

? localbitprec(128); intnumromb (x=2, 3, zeta (x))
%2 = 1.3675256886839791457066699268939213567
#4

* K Kk last result computed in 2,869 ms.

)

=

)
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call

The function call allows to call a fonction on a vector of
arguments:

call (sin, [P1/6])

1 = 0.50000000000000000000000000000000000000
call("_!'",[5])

2 =120

? printc(x[..])=call (printsep, [":",x]);

? printc(l,2, 3)

1:2:3

o° 0

o° 0
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Associative arrays
It is now possible to define associative arrays with arbitrary
index:

? M = Map(); \\ create an empty map
? mapput (M, "foo",17);

? mapput (M, 888,289);

? mapput (M, x"2+1,4913);

? Vec (M)

%5 = [888,x"2+1,"foo"]

? mapget (M, "foo")

$6 = 17

? mapisdefined (M, 888, &n)
$7 =1

?n
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Associative arrays

? mapdelete (M, 888);
? mapget (M, 888)
* kK at top-level: mapget (M, 888)
* * * N
xx* mapget: non-existent component in mapget:
index not in map

Maps can be converted to/from two-columns matrices:

? M=Map (["c",3;"b",2;"a",11);
? mapget (M, "b")

)
%3 = ["a",]_;"b",2;"C",3]
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L functions

An interface to L-functions has been added, see Karim tutorial.
The old (broken) functions zetak and zetakinit have been
removed. They can easily be replaced by 1 fun. For example,

to compute the value of the Dedekind ¢ function of Q(v/—1) at

2, one can simply do

? 1fun(x"2+1,2)
$1 = 1.5067030099229850308865650481820713960

Dirichlet, Hecke and Artin and elliptic L-functions are also
available. Theses functions honor the bit precision.
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Summation methods

The function sumnum now use Euler-MacLaurin instead of
Abel-Plana. Two summation methods using Gauss quadrature
have been added: intnumgauss for quadrature, and
sumnummonien for infinite sum.
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Modular polynomial for SEA

PARI will now automatically compute missing modular
polynomials needed for the SEA algorithm, by using Hamish
parallel implementation of Sutherland algorithm.

So it is possible to use SEA even when seadata is not
installed, thought it is slower.
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ellfromeqgn

The function e11fromegn computes a Weierstrass model for a
genus 1 curve given by a plane model P(X, Y) = 0, using
formulae from Artin, Tate and Villegas.

Counting points on an elliptic curve given by an Edward model

? F=ellfromeqn (X"2+Y"2—(1+3%X"2%xY"2));
%1 = [0,-4,0,-12,48]

? E=ellinit (F);

? ellcard(E,nextprime (27100))

%$3 = 1267650600228229911275035985812
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elltwist

The function e11twist returns a twist of an elliptic curve by a
quadratic extension. The extension can be omited for finite
fields. Example: Twist by an extension of discriminant —3:

? E=ellinit([1,7]*Mod(1,19));1lift(elltwist (E))
1 =100,0,0,11,12]

elltwist(ellinit ([0,a2,0,a4,a6]),—-3)

2 = [0,-3%a2,0,9%a4d4,-27*xa6]

E=ellinit ([al,a2,a3,a4,a6]*«Mod(1,2));

lift (elltwist (E, x"2+x+T))

$1 = [al,a2+al”2*T,a3,ad,a6+a3"2+T]

D o°

o\°
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ellminimaltwist
If E is a rational elliptic curve, el1minimaltwist (E) returns
a discriminant which gives the twist of E whose minimal model
has the minimal discriminant (or minimal conductor, if the flag is
set)
To find the curve with j-invariant 3 and minimal discriminant and
conductor

? E=ellminimalmodel (ellinit (ellfromj(3)));

? ellglobalred(E) [1]

%2 = 357075

? D = ellminimaltwist (E, 1)

%$3 = -15
E2=ellminimalmodel (ellinit (elltwist (E,D)));
ellglobalred(E2) [1]

%5 = 14283
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ellisomat

If E is a rational elliptic curve, ellisomat (E) computes
representatives of the isomorphism classes of elliptic curves
Q-isogenous to E.

? E=ellinit([0,-1,1,-10,-207); \\ X_0(11)
[L,M]=ellisomat (E, 1);
? L \\ List of representatives curves
$3 = [[-31/3,-2501/108],[-23461/1875,-28748141/1687
[-1/3,19/108]1]
? M \\ isogeny matrix
$4 = [1,5,5;5,1,25;5,25,1]

Without the flag, it also returns the isogenies from/to the
original curve.
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ellmoddegree

If E is a rational elliptic curve, el1lmoddegree (E) computes
the modular degree of E divided by the square of the Manin
constant.

? E=ellinit ("5077al");
? ellmoddegree (E)
$2 = [1984,-128]
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gforbits

gforbits returns the orbits of V under the action of the group
of linear transformation generated by the set G.

? Q=matid(6); G=gfauto(Q); V=gfminim(Q, 3);

? apply(x—>[x[1],#x],gforbits (G,V))

%2 =1[[10,0,0,0,0,1]~,61,110,0,0,0,1,-11~,30],
[ro,0,0,1,-1,-11~,8011

We see there is only one orbit for each norm < 3.
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parforvec

parforvec is the parallel version of forvec, with an interface
similar to parfor:

, f,print (v, "

L
.

? parforvec(v=[[1,31,11,311, factorback (v)
,£))

\
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Miscellaneous

? cotanh (1)

%$1 = 1.3130352854993313036361612469308478329
? sinc(Pi/2)

2 = 0.63661977236758134307553505349005744814
ramanujantau (101)

3 = 81742959102

? zetamult ([2,17])

$4 = 1.2020569031595942853997381615114499908
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