
An introduction to

the PARI/GP system

Karim Belabas

http://pari.math.u-bordeaux.fr/

Clermont-Ferrand (19/06/2017) – p. 1/18

PARI/GP ?

«The most important thing in a programming language is the name. A language will not succeed

without a good name. I have recently invented a very good name, and now I am looking for a

suitable language.»

(Often attributed to) Donald Knuth.

«Science is knowledge which we understand so well that we can teach it to a computer; and if we

don’t fully understand something, it is an art to deal with it.»

(Correctly attributed to) Donald Knuth.

Clermont-Ferrand (19/06/2017) – p. 2/18

PARI/GP ?

Pari/GP is a free software system for Number Theory. The system is built around three

components:

the Pari library, or libpari, the heart of the system. A large collection of fast special

purpose routines, also made available as special cases of generic high level functions.

Written and programmable in C.

the gp interpreter, giving access to the library using the GP language: simpler to use than C

and essentially optimal for high level code; slower in general.

the gp2c compiler from GP → C; as easy as GP, often as fast as C.

Clermont-Ferrand (19/06/2017) – p. 3/18

Where to start ?

Reference cards doc/refcard*.dvi: more precisely

refcard (general reference, 2 pages),

refcard-nf (algebraic number theory, 2 pages),

refcard-ell (elliptic curves, 1 page),

refcard-mf (modular forms, 1 page),

refcard-lfun (L-functions, 1 page).

Online help: ??function or ???keyword

GP tutorial (doc/tutorial.dvi, 58 pages)

GP user’s manual (doc/users.dvi, 508 pages)

The http://pari.u-bordeaux.fr/ website, in particular the FAQ and the

Documentation tabs.

Clermont-Ferrand (19/06/2017) – p. 4/18

Basics of the gp interpretor (1/2)

= is the assignment operator. The semicolon ; is a separator between successive

expressions.

Input is evaluated line by line, as soon as 〈Return〉 is pressed unless the line ends with a =

(middle of an assignment). Multi-line programs are input by surrounding the lines by braces.

This defines a user function:

f(x) =

{

my (a = 2*x); \\ local variables

my (b = a^2);

return (a + b);

}

Comments: everything following \\ to end of line, as well as /* this text */.

Write a sequence of instructions (usually functions) in a file, then \r file to read it in.

Clermont-Ferrand (19/06/2017) – p. 5/18

Basics of the gp interpretor (2/2)

An expressions has a value (result of the operation), the final result in a line is printed unless

a trailing semicolon follows the final expression:

? a = 1

%1 = 1

? a = 1; \\ nothing printed

Successive results are stored in the output history %1, %2, . . .

Successive inputs are stored in the command history, which can be edited (keyboard arrows);

〈TAB〉 triggers a contextual completion.

Clermont-Ferrand (19/06/2017) – p. 6/18

The PARI philosophy (1/4)

Algebraic expressions are input naively and represented exactly:

? 1 + 1

%1 = 2

? 2 / 6

%2 = 1/3

? (x+1)^(-2)

%3 = 1/(x^2 + 2*x + 1)

? Mod(2,5)^3 \\ in Z/5Z

%4 = Mod(3, 5)

? Mod(x, x^2+x*y+y^2)^3 \\ in Q[x, y]/(x2 + xy + y2)

%5 = Mod(y^3, x^2 + y*x + y^2)

Clermont-Ferrand (19/06/2017) – p. 7/18

The PARI philosophy (2/4)

Other expressions are approximated numerically or as power series.

? Pi

%1 = 3.1415926535897932384626433832795028842

? log(2)

%2 = 0.69314718055994530941723212145817656807

? log(1+x)

%3 = x - 1/2*x^2 + 1/3*x^3 - 1/4*x^4 + 1/5*x^5 - 1/6*x^6 (...)

In both cases a default accuracy is used (realprecision / realbitprecision or

seriesprecision), which can be changed using \pn, \pbn or \psn, e.g.

? \pb 20

realbitprecision = 20 significant bits (6 decimal digits displayed)

? Pi

%4 = 3.14159

? \ps 3

seriesprecision = 3 significant terms

Clermont-Ferrand (19/06/2017) – p. 8/18

The PARI philosophy (3/4)

“Everything that should make sense actually does.” A domain is determined where inputs make

sense and computations are performed there:

? T = x^2 + 1;

? factor(T) \\ in Q[x]

%7 =

[x^2 + 1 1]

? factor(T * Mod(1,5)) \\ in F5[x]

%8 =

[Mod(1, 5)*x + Mod(2, 5) 1]

[Mod(1, 5)*x + Mod(3, 5) 1]

? factor(T*(1 + O(5^3))); \\ in Q5[x]

? Mod(3,6) + Mod(2,4)

%10 = Mod(1, 2)

? Mod(1, x) + Mod(1, x+1) \\ in the null ring !

%11 = Mod(0, 1)

Clermont-Ferrand (19/06/2017) – p. 9/18

The PARI philosophy (4/4)

Precomputations are useful! Various init functions are attached to certain mathematical

contexts and their result are fed to other routines to specify a given context:

? E = ellinit([1,2]); \\ E/Q : y2 = x3 + x + 2

? elltors(E)

%2 = [4, [4], [[1, 2]]]

? ellmul(E, [1,2], 2) \\ [2]P on E, P = [1, 2]

%3 = [-1, 0]

? K = nfinit(y^2 + 23); \\ Q(
√

−23), basic invariants

? idealfactor(K,2) \\ factor 2ZK

? K = bnfinit(K); \\ same field, deeper invariants

? K.clgp \\ the class group of K is cyclic of order 3

%7 = [3, [3], [[2, 0; 0, 1]]]

Clermont-Ferrand (19/06/2017) – p. 10/18

The PARI philosophy (4/4)

? L = lfuninit(1, [100]); \\ Riemann ζ at 1/2 + it, |t| < 100

? lfunzeros(L,30)

%8 = [14.134..., 21.022..., 25.010...]

? A = alginit(nfinit(y), [-1,-1]); \\ quaternion alg. (−1, −1)Q

? algiscommutative(A)

%10 = 0

See also galoisinit (Galois groups), nfmodprinit (ZK → ZK/p), rnfinit (K ⊂ L),

thueinit (P (x, y) = a), rnfisnorminit (NL/K(x) = a), qfisominit (Λ ≃ Λ′?),

intnuminit, sumnuminit. . .

Clermont-Ferrand (19/06/2017) – p. 11/18

GP gems (1/3) : Euclid

GCD(a,b) = {

while(b, [a,b] = [b, a%b]);

return (a);

}

/* [d,u] = GCDEXT(a,b): au + bv = d; */

GCDEXT(a,b) = {

my(u = 1, v = 0);

while(b,

my([q,r] = divrem(a,b));

[a, b] = [b, r];

[u, v] = [v, u-q*v];

);

return ([a,u]);

}

Clermont-Ferrand (19/06/2017) – p. 12/18

GP gems (2/3) : determinant in Mn(Z) via CRT

We must compute det M (mod p) for primes p 6 x, such that

∏

p6x

p > 2B, where B = Hadamard(M) :=
∏

i

‖Mi‖2.

Theorem (Rosser-Schoenfeld, weak version).
∑

p6x

ln p > 0.84 · x, for x > 100.

Hadamard(M) = sqrt(prod(i=1, #M, norml2(M[,i])));

detZ(M) = {

my (v, B = 2*Hadamard(M), x = max(100, log(B) / 0.84));

v = [matdet(M * Mod(1,p)) | p <- primes([2, x])];

centerlift(chinese(v));

}

Clermont-Ferrand (19/06/2017) – p. 13/18

GP gems (2/3) : modular determinant, continued

Without Rosser-Schoenfeld estimate, using an infinite loop over primes:

detZ2(M) = {

my (p, q = 1.0, B = 2*Hadamard(M), v = List());

forprime(p = 2, +oo,

listput(v, matdet(M * Mod(1,p)));

q *= p; if (q > B, break);

);

centerlift(chinese(v));

}

Clermont-Ferrand (19/06/2017) – p. 14/18

GP gems(3/3), partial squarefree factorization over Fq[X]

If T ∈ Fq[X] factors into irreducibles as T =
∏

i T ei

i and

u = gcd(T, T ′), v = T/u, w = u/ gcd(u, vdeg T)

then

v =
∏

i : p∤ei

Ti and w =
∏

i : p|ei

T ei

i = W (Xp).

vW(F, T) = {

my(p = F.p, q = p^(F.f), n = poldegree(T));

my(u,v,w,W, X = variable(T));

u = gcd(T,T’); v = T/u; w = u / gcd(u, lift(Mod(v,u)^n));

W = apply(a->a^(q/p), substpol(w, X^p, X));

return ([v, W]);

}

F = ffgen(5^7, ’t); \\ a generator for F57

T = random(F*x^10) * random(F*x^10)^5;

[v,W] = vW(F, T)
Clermont-Ferrand (19/06/2017) – p. 15/18

Control structures (1/3)

This program computes

R(x) =



ζ(2)
∑

a6
√

x

µ(a)
⌊

x/a2
⌋

− x



 x(−2/5) = O(1) under GRH.

R(x) = {

my(s);

s = zeta(2) * sum(a=1, sqrt(x), moebius(a)*(x\a^2));

(s - x) / x^0.4;

}

? R(10^7)

time = 3 ms.

%1 = 0.052092560787004188970344062406837190410

? R(10^12)

time = 832 ms.

%2 = 0.010948893958117048274619354741759352927

? R(10^15);

time = 51,805 ms.
Clermont-Ferrand (19/06/2017) – p. 16/18

Control structures (2/3)

Another version, using the fact that multiplicative functions such as moebius also accepts inputs

of the form [a, factor(a)] instead of a plain integer a:

S(x) = {

my(s = 0);

forfactored(N = 1, floor(sqrt(x)),

my(a = N[1]);

s += moebius(N)*(x\a^2));

(zeta(2)*s - x) / x^0.4

}

? S(10^7);

time = 7 ms.

? S(10^12);

time = 984 ms.

? S(10^15);

time = 35,903 ms.

Clermont-Ferrand (19/06/2017) – p. 17/18

Control structures (3/3)

if(bool, seq1, seq2)

while(bool, seq)

for(i = a, b, f) f(a), f(a + 1), . . .

forprime(p = a, b, f) same over primes in [a, b]

forstep(i = a, b, step, f) f(a), f(a + step), . . .

fordiv(N, d, f)
∑

d|N f(d)

forvec(X = [[a, b], [c, d]], f) f(a, c), f(a, c + 1), . . . , f(a, d)

f(a + 1, c), f(a + 1, c + 1), . . . , f(a + 1, d)

. . .

f(b, c), f(b, c + 1), . . . , f(b, d)

break / next / return

Check also forsubset, forperm, forpart, forsubgroup, forell, forfactored,

fordivfactored. . .
Clermont-Ferrand (19/06/2017) – p. 18/18

