An introduction to the PARI/GP system

Karim Belabas
http://pari.math.u-bordeaux.fr/

PARI/GP ?

«The most important thing in a programming language is the name. A language will not succeed without a good name. I have recently invented a very good name, and now I am looking for a suitable language.»
(Often attributed to) Donald Knuth.
«Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.»
(Correctly attributed to) Donald Knuth.

PARI/GP?

PARI/GP is a free software system for Number Theory. The system is built around three components:

- the PARI library, or libpari, the heart of the system. A large collection of fast special purpose routines, also made available as special cases of generic high level functions. Written and programmable in C.
- the gp interpreter, giving access to the library using the GP language: simpler to use than C and essentially optimal for high level code; slower in general.
- the gp2c compiler from GP \rightarrow C; as easy as GP, often as fast as C.

Where to start?

- Reference cards doc/refcard*.dvi: more precisely
refcard (general reference, 2 pages),
refcard-nf (algebraic number theory, 2 pages),
refcard-ell (elliptic curves, 1 page),
refcard-mf (modular forms, 1 page),
refcard-lfun (L-functions, 1 page).
- Online help: ??function or ???keyword
- GP tutorial (doc/tutorial.dvi, 58 pages)
- GP user's manual (doc/users.dvi, 508 pages)
- The http://pari.u-bordeaux.fr/ website, in particular the FAQ and the Documentation tabs.

Basics of the gp interpretor (1/2)

- = is the assignment operator. The semicolon ; is a separator between successive expressions.
- Input is evaluated line by line, as soon as \langle Return \rangle is pressed unless the line ends with $\mathrm{a}=$ (middle of an assignment). Multi-line programs are input by surrounding the lines by braces.
- This defines a user function:
$f(x)=$
\{
my ($\mathrm{a}=2 * \mathrm{x}$); \quad l local variables
my (b = a^2);
return (a + b);
\}
- Comments: everything following $\backslash \backslash$ to end of line, as well as $/ *$ this text $* /$.
- Write a sequence of instructions (usually functions) in a file, then \r file to read it in.

Basics of the gp interpretor (2/2)

- An expressions has a value (result of the operation), the final result in a line is printed unless a trailing semicolon follows the final expression:

```
? \(\quad a=1\)
\(\% 1=1\)
? a = 1; \(\quad\) \ nothing printed
```

- Successive results are stored in the output history $\% 1, \% 2, \ldots$
- Successive inputs are stored in the command history, which can be edited (keyboard arrows); $\langle T A B\rangle$ triggers a contextual completion.

The PARI philosophy (1/4)

Algebraic expressions are input naively and represented exactly:

```
? 1 + 1
%1 = 2
? 2 / 6
%2 = 1/3
? (x+1)^(-2)
%3 = 1/(x^2 + 2*x + 1)
? Mod}(2,5)^3 \\ in \mathbb{Z}/5\mathbb{Z
%4 = Mod(3, 5)
? Mod(x, x^2+x*y+y^2)^3 \\ in \mathbb{Q}[x,y]/( ( }\mp@subsup{x}{}{2}+xy+\mp@subsup{y}{}{2}
%5 = Mod(y^3, x^2 + y*x + y^2)
```


The PARI philosophy (2/4)

Other expressions are approximated numerically or as power series.

```
? Pi
%1 = 3.1415926535897932384626433832795028842
? log(2)
%2 = 0.69314718055994530941723212145817656807
? log(1+x)
%3 = x - 1/2*x^2 + 1/3*x^3 - 1/4*x^4 + 1/5*x^5 - 1/6*x^6 (...)
In both cases a default accuracy is used (realprecision / realbitprecision or
seriesprecision), which can be changed using \pn, \pbn or \psn, e.g.
? \pb 20
realbitprecision = 20 significant bits (6 decimal digits displayed)
? Pi
%4 = 3.14159
? \ps 3
seriesprecision = 3 significant terms
```


The PARI philosophy (3/4)

"Everything that should make sense actually does." A domain is determined where inputs make sense and computations are performed there:

```
? T = x^2 + 1;
? factor(T) \\ in \mathbb{Q}[x]
%7 =
[x^2 + 1 1]
? factor(T * Mod(1,5)) \\ in }\mp@subsup{\mathbb{F}}{5}{[}[x
%8 =
[Mod(1, 5)*x + Mod(2, 5) 1]
[Mod(1, 5)*x + Mod(3, 5) 1]
? factor (T* (1 + O(5^3))); \\ in \mathbb{Q}
? Mod(3,6) + Mod(2,4)
%10 = Mod(1, 2)
? Mod(1, x) + Mod(1, x+1) \\ in the null ring !
%11 = Mod(0, 1)
```


The PARI philosophy (4/4)

Precomputations are useful! Various init functions are attached to certain mathematical contexts and their result are fed to other routines to specify a given context:

```
? E = ellinit([1,2]); \\ E/\mathbb{Q}:\mp@subsup{y}{}{2}=\mp@subsup{x}{}{3}+x+2
? elltors(E)
%2 = [4, [4], [[1, 2]]]
? ellmul(E, [1,2], 2) \\ [2]P on E, P=[1,2]
%3 = [-1, 0]
? K = nfinit(y^2 + 23); \\ \mathbb{Q}(\sqrt{}{-23}), basic invariants
? idealfactor(K,2) \\ factor 2\mathbb{Z}
? K = bnfinit(K); \\ same field, deeper invariants
? K.clgp \\ the class group of K is cyclic of order 3
%7 = [3, [3], [[2, 0; 0, 1]]]
```


The PARI philosophy (4/4)

? L = lfuninit (1, [100]); $\quad \backslash \backslash$ Riemann ζ at $1 / 2+i t,|t|<100$
? lfunzeros(L, 30)
\%8 = [14.134..., 21.022..., 25.010...]
? $A=$ alginit(nfinit(y), [-1,-1]);
 quaternion alg. $(-1,-1)_{\mathbb{Q}}$
? algiscommutative(A)
\%10 = 0
See also galoisinit (Galois groups), nfmodprinit ($\mathbb{Z}_{K} \rightarrow \mathbb{Z}_{K} / \mathfrak{p}$), rnfinit ($K \subset L$), thueinit $(P(x, y)=a)$, rnfisnorminit ($\left.N_{L / K}(x)=a\right)$, qfisominit ($\Lambda \simeq \Lambda^{\prime}$?), intnuminit, sumnuminit...

GP gems (1/3) : Euclid

```
GCD (a,b) = {
    while(b, [a,b] = [b, a%b]);
    return (a);
}
/* [d,u] = GCDEXT(a,b): au + bv = d; */
GCDEXT(a,b) = {
    my(u = 1, v = 0);
    while(b,
        my([q,r] = divrem(a,b));
        [a, b] = [b, r];
        [u, v] = [v, u-q*v];
    );
    return ([a,u]);
}
```


GP gems (2/3) : determinant in $M_{n}(\mathbb{Z})$ via CRT

We must compute $\operatorname{det} M(\bmod p)$ for primes $p \leqslant x$, such that

$$
\prod_{p \leqslant x} p>2 B, \quad \text { where } B=\operatorname{Hadamard}(M):=\prod_{i}\left\|M_{i}\right\|_{2} .
$$

Theorem (Rosser-Schoenfeld, weak version).

$$
\sum_{p \leqslant x} \ln p>0.84 \cdot x, \quad \text { for } x>100
$$

```
Hadamard(M) = sqrt( prod(i=1, #M, norml2(M[,i])) );
detZ(M) = {
    my (v, B = 2*Hadamard(M), x = max(100, log(B) / 0.84));
    v = [ matdet(M * Mod(1,p)) | p <- primes([2, x]) ];
    centerlift( chinese(v) );
}
```


GP gems (2/3) : modular determinant, continued

```
Without Rosser-Schoenfeld estimate, using an infinite loop over primes:
detZ2(M) = {
    my (p, q = 1.0, B = 2*Hadamard(M), v = List());
    forprime(p = 2, +oo,
        listput(v, matdet(M * Mod(1,p)));
        q *= p; if (q > B, break);
    );
    centerlift( chinese(v) );
}
```


GP gems(3/3), partial squarefree factorization over $\mathbb{F}_{q}[X]$

If $T \in \mathbb{F}_{q}[X]$ factors into irreducibles as $T=\prod_{i} T_{i}^{e_{i}}$ and

$$
u=\operatorname{gcd}\left(T, T^{\prime}\right), \quad v=T / u, \quad w=u / \operatorname{gcd}\left(u, v^{\operatorname{deg} T}\right)
$$

then

$$
v=\prod_{i: p \nmid e_{i}} T_{i} \quad \text { and } \quad w=\prod_{i: p \mid e_{i}} T_{i}^{e_{i}}=W\left(X^{p}\right) .
$$

```
vW(F,T) = {
    my(p = F.p, q = p^(F.f), n = poldegree(T));
    my(u,v,w,W, X = variable(T));
    u = gcd(T,T'); v = T/u; w = u / gcd(u, lift(Mod(v,u)^n));
    W = apply(a->a^(q/p), substpol(w, X^p, X));
    return ([v, W]);
}
F = ffgen(5^7, 't); \\ a generator for }\mp@subsup{\mathbb{F}}{5}{7
T = random(F*x^10) * random(F*x^10)^5;
[v,W] = vW(F,T)
```


Control structures (1/3)

This program computes

$$
R(x)=\left(\zeta(2) \sum_{a \leqslant \sqrt{x}} \mu(a)\left\lfloor x / a^{2}\right\rfloor-x\right) x^{(-2 / 5)}=O(1) \text { under GRH. }
$$

```
R(x) = {
    my(s);
    s = zeta(2) * sum(a=1, sqrt(x), moebius(a)*(x\a^2));
    (s - x) / x^0.4;
}
? R(10^7)
time = 3 ms.
%1 = 0.052092560787004188970344062406837190410
? R(10^12)
time = 832 ms.
%2 = 0.010948893958117048274619354741759352927
? R(10^15);
time = 51,805 ms.
```


Control structures (2/3)

```
of the form [a, factor(a)] instead of a plain integer a:
S(x) = {
    my(s = 0);
    forfactored(N = 1, floor(sqrt(x)),
        my(a = N[1]);
        s += moebius(N)*(x\a^2));
    (zeta(2)*s - x) / x^0.4
}
? S(10^7);
time = 7 ms.
? S(10^12);
time = 984 ms.
? S(10^15);
time = 35,903 ms.
```

Another version, using the fact that multiplicative functions such as moebius also accepts inputs

Control structures (3/3)

$$
\begin{aligned}
& \text { if }\left(b o o l, \operatorname{seq}_{1}, \text { seq }_{2}\right) \\
& \text { while }(b o o l, \text { seq }) \\
& \text { for }(i=a, b, f) \quad f(a), f(a+1), \ldots \\
& \text { forprime }(p=a, b, f) \quad \text { same over primes in }[a, b] \\
& \text { forstep }(i=a, b, \text { step, } f) \quad f(a), f(a+\operatorname{step}), \ldots \\
& \begin{array}{l}
\text { fordiv }(N, d, f) \quad \sum_{d \mid N} f(d) \\
\text { forvec }(X=[[a, b],[c, d]], f) \quad f(a, c), f(a, c+1), \ldots, f(a, d) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

break / next / return
Check also forsubset, forperm, forpart, forsubgroup, forell, forfactored, fordivfactored...

