Algebraic number theory, class field theory

Marine Rougnant

19/02/2024-23/02/2024

1 Number field

Exercise 1. Let $Q=x^{3}-111 x^{2}+6064 x-189804$.

1. Check that Q is irreducible.
2. Compute a nicer defining polynomial P for the same field

3 . Check that they really define the same number field.
4. Initialise the number field $F=\mathbb{Q}(\alpha)$ defined by P (nfinit).
5. What are

- the signature of F ?
- the discriminant of F ?
- a \mathbb{Z}-basis of \mathbb{Z}_{F} ?

6. You can represent elements in polynomial form $(\operatorname{Mod}(\ldots, \mathrm{P}))$ or as column vectors of coefficients on the basis of \mathbb{Z}_{F}. What are the coefficients of $-\frac{5}{2} \alpha^{2}+\frac{19}{2} \alpha-3$ on the basis? Is it an algebraic integer? What are its trace and norm ?
7. Compute the prime decomposition of $2,3,19$. How many primes ideals are there above them? What are their ramification indices? Residue degree? Compute a basis of these prime ideals. Compute the image of some elements in the residue field (nfmodpr).
8. Compute a product of some ideals in F (idealmul, idealpow, idealfactorback). Factor it as a product of prime ideals (idealfactor). Check the valuations separately (idealval).
9. Is F Galois (galoisinit)? Does it have automorphisms (nfgaloisconj)? What is the Galois group of its Galois closure (polgalois)? Compute a defining polynomial of its Galois closure (nfsplitting).

2 Class group and units

Exercise 2.

To compute the class group and unit group, use bnfinit. Let's denote by L the number field defined by $P=x^{3}-x^{2}-92 x-236$

1. What is $\mathrm{L}[7]$? Find a way to recover it using L. xxx.
2. What is the structure of the class group?
3. What are the corresponding generators of the class group?
4. What is the rank of the unit group? What are generators of the unit group ?
5. Explore and experiment with bnfisprincipal:
(a) Compute the prime decomposition of 13 . Let $p r_{i}$ be the i-th component of the output.
(b) Express the class of each ideal $p r_{i}$ in terms of the generators of the class group. Are they principal ideals?
(c) Use idealfactorback and bnfisprincipal(L,pr) to compute the Hermite normal form of the ideal $p r 1$. Compare with idealhnf ($\mathrm{L}, \mathrm{pr} 1$).
(d) Show that the square of the ideal $p r 1$ is a principal ideal.

Exercise 3.

Consider the quartic field $K=\mathbb{Q}(\sqrt[4]{65})$.

1. Initialize K.
2. Determine a \mathbb{Z}-basis of \mathcal{O}_{K} (see nfbasis).
3. Find a polynomial over \mathbb{Q} for the fourth term in the \mathbb{Z}-basis (see real and polroots).
4. Compute the discriminant ok K. Deduce the list of the ramified primes in K.
5. What is $\left[\mathcal{O}_{K}: \mathbb{Z}(\sqrt[4]{65})\right]$?
6. Determine the prime ideal factorizations of $2,3,5$, and 7 in K.
7. What is the class group of K ? (you need a bnf structure of K).
8. Give a system of fundamental units of K.
9. What is the regulator of K? (see bnfreg)

3 Ramification groups

Exercise 4.

Consider $P=x^{4}-x^{3}-3 x^{2}+x-1$ and denote by K its splitting field.

1. Compute the polynomial Q defing K (use polredbest).
2. Initialize the number field K.
3. Which primes ramify in K / \mathbb{Q} ?
4. Compute the decomposition of 3 in prime ideals. How many prime ideals are above 3 ? With which residue degree and ramification index ? Denote by $p r$ the first one.
5. Use idealramgroupsto compute the decomposition group of $p r$ and its inertia group.

4 Subfields

Exercise 5.

Let $K=\mathbb{Q}[X] / P(X)=\mathbb{Q}(\alpha)$ be the number fields defined by $P=y^{8}-y^{6}+2 y^{2}+1$. Explore and experiment with nfsubfields :

1. Give the number of subfields of K (up to isomorphisms).
2. How many of them have degree 4 over \mathbb{Q} ?
3. For each of these (degree 4) subfields L_{i} :
(a) give the absolute equation (ie the polynomial P_{i} definig L_{i} / \mathbb{Q}),
(b) the embedding $L_{i} \subset K$ (ie a root of P_{i} as a polynomial in α),
(c) the image in K of the element $a=y^{2}+y \in L_{i}$ (see minpoly).

Exercise 6. Abelian extensions of \mathbb{Q}
Recall that every Abelian extension of \mathbb{Q} is contained in a cyclotomic field (Kronecker-Weber).

1. Compute every subfield of $\mathbb{Q}\left(\zeta_{60}\right)$ of degree 8 (see polsubcyclo).
2. Computes the subfield fixed by the subgroup of $(\mathbb{Z} / 60 \mathbb{Z})^{\times}$generated by -1 (see galoissubcyclo)

Exercise 7.

1. Let $K=\mathbb{Q}[\alpha]$ the field defined by $P=x^{4}-x^{3}-3 x+4$. Use nfinit to compute K.
2. We consider

$$
Q=y^{3}+(-\alpha-1) y^{2}+\left(\alpha^{3}+\alpha-2\right) y+\left(-\alpha^{3}+3\right) \in \mathbb{Q}[\alpha][y] .
$$

Check that Q is irreducible over K using nffactor.
Remark: by default, $\mathbb{Q}[x, y]=\mathbb{Q}[y][x]$. To force $\mathbb{Q}[x, y]=\mathbb{Q}[x][y]$, you have to specify y=varhigher ("y").
3. Consider the extension $L=K[\beta]$ where β is a root of Q . What is the degree of the extension L / \mathbb{Q} ?
4. Compute a polynomial which defines L / \mathbb{Q} using rnfequation.
5. With nfsubfields, find the number of subfields of L. Do some of them are isomorphic?

5 Hilbert class field

Exercise 8.

Consider the number field K defined by $P=y^{2}-y+1007$.

1. Initialize K and check that the class group is isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
2. Using bnrclassfield, compute the Hilbert class field H of K. The output is a couple of polynomial of degree 3 , why ?
3. With nfcompositum, compute a single defining polynomial of H / K. Find a way to get this polynomial without using the function nfcompositum (see the documentation of bnrclassfield).
4. Give a single absolute defining polynomial of H / \mathbb{Q}.

6 Ray class field

Exercise 9.

Consider the number field K defined by $P=y^{2}-y+1007$ and le prime ideal \mathfrak{p} above 13 given by pr $=$ idealprimedec (bnf,13) [1].

1. Use bnrinit to initialize the ray class group structure corresponding to \mathfrak{p}.
2. Find its structure (bnr.cyc).
3. Using bnrclassfield, compute the ray class field L of K. Give :
(a) its degree (see bnrdisc),
(b) its definition as a compositum of several extensions of K (use polredbest and lift to simplify the relative defining polynomials),
(c) an absolute defining polynomial.
