Elliptic curves

Marine Rougnant

19/02/2024-23/02/2024

1 Elliptic curves over \mathbb{Q}

Exercise 1. Consider the elliptic curve $(E): y^{2}=x^{3}-43 x+166$.

1. Initialize E_{0} (ellinit)
2. For $P=(x, y)$ and $Q=\left(x^{\prime}, y^{\prime}\right)$ to points of E, give the explicit components of :
(a) $\mathrm{P}+\mathrm{Q}$
(b) -P
(c) P-Q
(d) 2 P
3. Check that $P=(3,8)$ is a point on E (ellisoncurve).
4. Compute $2 P, 4 P$ and $8 P$ (ellmul). What can we deduce?
5. Use ellorder to verify your guess.

Exercise 2.

Consider the elliptic curve E_{0} defined by the affine equation $y^{2}+6 x y+9 y=x^{3}-3 x^{2}-16 x-14$.

1. Initialize E_{0} (ellinit).
2. Compute its discriminant and conductor (ellglobalred).
3. Use ellminimalmodel to get a global minimal integral model for E_{0} and give its Weierstrass equation. What is the change of variable ? Denote by E this second elliptic curve.
4. Check that the point $q_{0}=(-2,2)$ is on E_{0} (ellisoncurve), then transfer it onto E with ellchangepoint.
5. (a) Is the point $q=(0,0)$ a point of E ?
(b) Compute the inverse of q. Using ellneg, find the coordinates of the opposite of a point (x, y) on E.
(c) Compute in two different ways $2 q$.
(d) Is q a torsion point? (ellheight, ellorder (e, q))

1.1 Torsion

Exercise 3.

Consider the elliptic curve E defined by the affine equation $y^{2}+y=x^{3}-x^{2}$ et the point $q=(0,0)$.

1. Initialize E.
2. Using ellheight, check that q is a torsion point.
3. Compute in two different ways the order of q.
4. Give the structure of the torsion of E (elltors) and a generator.

1.2 Modell-Weil group

Exercise 4.

Consider the elliptic curve E defined by the affine equation $y^{2}+y=x^{3}-7 x+6$

1. Initialize E, and give its conductor.
2. What is the torsion groupe of E ?
3. With ellratpoints, find all the points (x, y) on E whose x-coordinate is n / d with $|n|,|d|<100$.
4. Sort the vecteur according the value of the first coordinate and eliminate duplicates (see vecsort).
5. Order the remaining points according their height (see vecextract)
6. Compute the rank of E and a list of 3 independent, non-torsion rational points on the curve (ellrank). These points generate a subgroup G of finite index of the Mordell-Weil group.
7. With ellsaturation, find a family of 3 points that generate a subgroup H of $E(\mathbb{Q})$ such that $G \subset H$ and the index $[E(\mathbb{Q}): H]$ is not divisible by any prime number less than 100 .
8. Compare the rank of the two sets of points. (see ellheightmatrix).

2 Elliptic curves over a finite field

Exercise 5.

Consider the elliptic curve E defined over \mathbb{F}_{5} by $y^{2}=x^{3}+x+1$.

1. Initialize E.
2. Show that $3(0,1)=(2,1)$ on E.
3. Compute the order of $E\left(\mathbb{F}_{5}\right)$ and give its structure.
4. Deduce that $(0,1)$ generates $E\left(\mathbb{F}_{5}\right)$.
5. Write some instructions to get the list of all the generators of $E\left(\mathbb{F}_{5}\right)$.
6. Use ellgenerators to find another generator of $E\left(\mathbb{F}_{5}\right)$, then express each of the previous points as powers of this generator (elllog)

Exercise 6.

Let E be the elliptic curve over \mathbb{Q} defined by the Weierstrass equation $y^{2}+y=x^{3}-x^{2}-10 x-20$. An elliptic curve over $\mathbb{F}_{p}(p$ prime $)$ is said to be supersingular at p if $\operatorname{Card}\left(E\left(\mathbb{F}_{p}\right)\right)=p+1$.

1. Try to reduce $E \bmod 11$. Is that an elliptic curve over \mathbb{F}_{11} ? Compute the discriminant of E to confirm.
2. Take $p=3$. Is E supersingular at p ?
3. Write a function which returns, for a given elliptic curve over \mathbb{Q} and a given bound d, the list of all the prime numbers p such that E is supersingular at p.
