Elliptic curves

Marine Rougnant

19/02/2024 - 23/02/2024

1 Elliptic curves over \mathbb{Q}

Exercise 1. Consider the elliptic curve (E): $y^2 = x^3 - 43x + 166$.

- 1. Initialize E_0 (ellinit)
- 2. For P = (x, y) and Q = (x', y') to points of E, give the explicit components of :
 - (a) P+Q
 - (b) -P
 - (c) P-Q
 - (d) 2P
- 3. Check that P = (3, 8) is a point on E (ellisoncurve).
- 4. Compute 2P, 4P and 8P (ellmul). What can we deduce ?
- 5. Use ellorder to verify your guess.

Exercise 2.

Consider the elliptic curve E_0 defined by the affine equation $y^2 + 6xy + 9y = x^3 - 3x^2 - 16x - 14$.

- 1. Initialize E_0 (ellinit).
- 2. Compute its discriminant and conductor (ellglobalred).
- 3. Use ellminimalmodel to get a global minimal integral model for E_0 and give its Weierstrass equation. What is the change of variable ? Denote by E this second elliptic curve.
- 4. Check that the point $q_0 = (-2, 2)$ is on E_0 (ellisoncurve), then transfer it onto E with ellchangepoint.
- 5. (a) Is the point q = (0, 0) a point of E?
 - (b) Compute the inverse of q. Using ellneg, find the coordinates of the opposite of a point (x, y) on E.
 - (c) Compute in two different ways 2q.
 - (d) Is q a torsion point ? (ellheight, ellorder(e, q))

1.1 Torsion

Exercise 3.

Consider the elliptic curve E defined by the affine equation $y^2 + y = x^3 - x^2$ et the point q = (0, 0).

- 1. Initialize E.
- 2. Using ellheight, check that q is a torsion point.
- 3. Compute in two different ways the order of q.
- 4. Give the structure of the torsion of E (elltors) and a generator.

1.2 Modell-Weil group

Exercise 4.

Consider the elliptic curve E defined by the affine equation $y^2 + y = x^3 - 7x + 6$

- 1. Initialize E, and give its conductor.
- 2. What is the torsion groupe of E?
- 3. With ellratpoints, find all the points (x, y) on E whose x-coordinate is n/d with |n|, |d| < 100.
- 4. Sort the vecteur according the value of the first coordinate and eliminate duplicates (see vecsort).
- 5. Order the remaining points according their height (see vecextract)
- 6. Compute the rank of E and a list of 3 independent, non-torsion rational points on the curve (ellrank). These points generate a subgroup G of finite index of the Mordell-Weil group.
- 7. With ellsaturation, find a family of 3 points that generate a subgroup H of $E(\mathbb{Q})$ such that $G \subset H$ and the index $[E(\mathbb{Q}) : H]$ is not divisible by any prime number less than 100.
- 8. Compare the rank of the two sets of points. (see ellheightmatrix).

2 Elliptic curves over a finite field

Exercise 5.

Consider the elliptic curve E defined over \mathbb{F}_5 by $y^2 = x^3 + x + 1$.

- 1. Initialize E.
- 2. Show that 3(0,1) = (2,1) on *E*.
- 3. Compute the order of $E(\mathbb{F}_5)$ and give its structure.
- 4. Deduce that (0,1) generates $E(\mathbb{F}_5)$.
- 5. Write some instructions to get the list of all the generators of $E(\mathbb{F}_5)$.
- 6. Use ellgenerators to find another generator of $E(\mathbb{F}_5)$, then express each of the previous points as powers of this generator (elllog)

Exercise 6.

Let *E* be the elliptic curve over \mathbb{Q} defined by the Weierstrass equation $y^2 + y = x^3 - x^2 - 10x - 20$. An elliptic curve over \mathbb{F}_p (*p* prime) is said to be supersingular at *p* if Card($E(\mathbb{F}_p)$) = *p* + 1.

- 1. Try to reduce $E \mod 11$. Is that an elliptic curve over \mathbb{F}_{11} ? Compute the discriminant of E to confirm.
- 2. Take p = 3. Is E supersingular at p?
- 3. Write a function which returns, for a given elliptic curve over \mathbb{Q} and a given bound d, the list of all the prime numbers p such that E is supersingular at p.