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Plane algebraic curves in PARI/GP

Package to handle plane algebraic curves C : F(x,y) = 0.

Actually computes the desingularisation C — C of (the
projective closure of)

& ®<

Main idea: represent “difficult” points of C by formal
parametrisations x(t), y(t).
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Plane algebraic curves in PARI/GP

Package to handle plane algebraic curves C : F(x,y) = 0.

Actually computes the desingularisation C — C of (the
projective closure of)

& ®<

Main idea: represent “difficult” points of C by formal
parametrisations x(t), y(t).

Supported ground fields:
e Finite fields (but cannot handle some small
characteristics),
o Fields of characteristic 0 (as long as PARI can factor
polynomials over them...)
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Example: Creation, divisors, Riemann-Roch

C=crvinit(x~11+y~7-2*x*y~5,t,a);
crvprint (C)

P=[1,1]
D=[P,-2;2,6;1,1]
crvdivprint(C,D);

L=crvRR(C,D)

crvfndiv(C,L[1],1);
crvfndiv(C,L[2],1);
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Example: Rational curves

f=x"5+y"7+Mod (b,b"2-2) *x" 3%y~ 3;
C=crvinit(f,t,a);

crvprint (C)
[T,param]=crvrat(C,1,3)

lift(param)
substvec(f, [x,y],param)

1ift(T)
crvfndiv(C,T,1);

crvrat(C)
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Example: Hyperelliptic / elliptic curves

C=crvinit(x~5+y~6+x"3*y,t,a);
crvprint (C)

crvishyperell(C)
crvhyperell (C)

Cl=crvinit(x"5+y~7+x"3*y~4,t,a);
crvprint (C1)
crvell(C1,[1,-1,0])
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Other functionalities

@ Over finite fields:
Point counting, Zeta functions, group structure and word
problem in Pic(C) (analogs of bnfinit and bnfisprincipal).

@ Over number fields:
Division polynomials, Galois representations.
Bounding torsion of Pic(C), checking if divisors are
torsion in Pic(C).
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Symbolic integration of
algebraic functions




Integration vs. differentiation

DIFFERENTIATION
TRY APPLYING

CHAIN POWER
RULE RULE

PRODUCT
QUOTIENT RUE
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(Non-)elementary integrals

Complicated integrals often cannot be solved, e.g.

/ _X2d / dX
e X or y—————
vx3+1

d
But then what about /—X = log x?
X
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Differential algebra

A differential field is a set of functions which is closed under
+7 ) X7 +7/'
Example: Q(x).

Let F be a differential field, and let y be a function.
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Differential algebra

A differential field is a set of functions which is closed under
+7 - X, +7/'
Example: Q(x).
Let F be a differential field, and let y be a function.

@ y is logarithmic over F if y' = f'/f for some f € F.

@ y is exponential over F if y'/y = f’ for some f € F.
We then say that F(y) is a logarithmic / exponential
extension of F.
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Differential algebra

A differential field is a set of functions which is closed under
/

+ = X,y
Example: Q(x).

Let F be a differential field, and let y be a function.
@ y is logarithmic over F if y' = f'/f for some f € F.
@ y is exponential over F if y'/y = f’ for some f € F.
We then say that F(y) is a logarithmic / exponential
extension of F.

An extension of F is elementary if it can be obtained from F
as a finite succession of logarithmic / exponential / algebraic
extensions.

An integral [ f is elementary over F if there exists an
elementary extension of F which contains a function F such
that F' = f.
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Differential algebra

An extension of F is elementary if it can be obtained from F
as a finite succession of logarithmic / exponential / algebraic
extensions.

An integral [ f is elementary over F if there exists an
elementary extension of F which contains a function F such
that F/ = f.

° / £ arctan 1 lo (1+ _1X)
—_— X =
X211 /-1 e\1_/"ix

is elementary over Q(x).

@ More generally, f(x) € Q(x) = /f(x) dx is elementary.

e OTOH, /ex2 dx is not elementary over C(x).
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Integrating algebraic functions

Let f(x, y) be an algebraic function.
This means f € F where F = Q(C) = Q(x)[y]/(F(x,y)) is
the function field of a curve C : F(x,y) =0.

Is / f(x,y)dx elementary over F? (< over Q(x)?)
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Integrating algebraic functions

Let f(x, y) be an algebraic function.
This means f € F where F = Q(C) = Q(x)[y]/(F(x,y)) is
the function field of a curve C : F(x,y) =0.

Is / f(x,y)dx elementary over F? (< over Q(x)?)
Usually not!

/ x dx
Vx*+10x2 — 96x — m

is not elementary for most values of m € Q... but

/ x dx
Vx4 +10x2 — 96x — 71

is elementary!
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Liouville’s criterion

Definition
Let F be a differential field. A Liouville sum over F is an
expression of the form m
dgo + Z C,'—gll
i=1 !
where go, 81, ,&n € F and ¢y, - - - , ¢, are constants.

.

Theorem (Liouville)
Let F be a differential field of characteristic 0, and let f € F.

/ f is elementary over F <= f dx is a Liouville sum over F.
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Minimal Liouville sums

m
dg; .
Let dgo + Z C,-?g_ be a Liouville sum over F.
i=1 !

Pick a Z-basis e, - - , eq of the Z-span of ¢1, -+, ¢y
d
WC;:Z)\,'JGJ', )\,‘JGZ.
j=1

Then

d m
dg; dG; -
Z o8~ ej?_J, where G; = Hg,-/\’” € F.
j=1 J i=1
~» WLOG, we will assume m minimal, meaning that
the ¢; are Q-linearly independent.
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Controlling poles

Let 7 = Q(C) function field of C: F(x,y) =0, let g € F,
and let P € C.
@ If g has a pole of order n > 1 at P, then dg has a pole of
order n+1 > 2 at P.

e If ordp(g) = n # 0, then c{?g has a simple pole at P with

residue n.
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Controlling poles

o If g has a pole of order n > 1 at P, then dg has a pole of
order n+1 > 2 at P.

d
e If ordp(g) = n # 0, then Eg has a simple pole at P with

residue n.

Consequence: Let w = f(x)dx be a meromorphic differential
on a curve C.

"\ dg; . .
If w=dgy+ Z c,-—g is a Liouville sum,
i=1 i
o If all the poles of w are simple, then gy has no poles, so
dgo =0.
@ Take m minimal; then the ¢; form a Q-basis of the

m d ,
Q-span of the residues of Z Ci— & .

i=1
@ In particular, if w has no poles, then w=0.
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Controlling poles

Consequence: Let w = f(x) dx be a meromorphic differential
on a curve C.

" dg . .
If w=dgo+ Z c,-—g is a Liouville sum,
. 8i
i=1
o If all the poles of w are simple, then gy has no poles, so
dgo =0.
@ Take m minimal; then the ¢; form a Q-basis of the

m d ,
Q-span of the residues of Z c, & .

i=1
@ In particular, if w has no poles, then w = 0.

/ dx i t el t because dx has no poles
———— is not elementary, use w = — no p
vVx3+1 U y

on C:y?=x3+1.
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Reduction to simple poles

Let f € F =Q(C), and let -
(fdx)oo = Z”kpk

k=1
be the divisor of poles of f dx.

fdx:dgo—i—Zc,-—g = go € L(D), where D:Z(nk —1)Py.
i—1 k=1
~~ Look for gg € L(D) such that f dx — dgp only has simple

poles.
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Reduction to simple poles

Let f € F =Q(C), and let -
(fdx)oo = Z”kpk

k=1
be the divisor of poles of f dx.

fdx:dgo—i—Zc,-—g = go € L(D), where D:Z(nk —1)Py.
=1 ©f k=1

~~ Look for gg € L(D) such that f dx — dgp only has simple

poles.

If none exists, f f dx is not elementary.
Otherwise, dgp is unique, and /fdx =g+ /wl

where w; = f dx — dgp only has simple poles.
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Torsion divisors

Let w; have simple poles Py, -, P, € C with residues
p1 e, pm € Q.

Let /‘(:(@(pl7 ,pm) DO V = Q-span ofpl’... s Prm-

Let e1,--- ,eq be a Q-basis of V such that p, = 27:1 Ik j€

for some r,; € Z. Let D; = ) rkjPx € Div®(Ck).

Claim: [w; elementary = D; is torsion in Pic’(Cx) for all j.
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Torsion divisors

Claim: [w; elementary = D; is torsion in Pic(Cx) for all j.

n

dg;
Indeed, suppose w; = Z c, & .

WLOG d = n and the Ic, form another Q-basis of V/, say
Pij

e = —=¢; for some p;;, q € Z.
i1 9
d d
As Z rvj€ = Pk = Z G orde(gl).
j=1 i=1
d d m m
ZeJDJ = ZeerkJPk = Zkak
j=1 j=1 k=1 k=1
m d d d d p
=> " cordp(g) =) cle)=> &> %(g,)
k=1 i=1 i=1 j=1 =l
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Torsion divisors

Let w; have simple poles Py, -, P, € C with residues
p1 e, pm € Q.

Let /‘(:(@(pl7 ,pm) DO V = Q-span ofpl’... s Prm-

Let e1,--- ,eq be a Q-basis of V such that p, = 27:1 Ik j€

for some r,; € Z. Let D; = ) rkjPx € Div®(Ck).
If some D; is not torsion, then fwl is not elementary.

OtherW|se find (g;) = q;D; for g; € K(C), g; € N. Then

—Z ﬁ satisfies Restr]:Z—qukJ:pk:ReSPkwl,
198 1

SO wp = wy — N has no poles, and

d
e.

/wlz E jlog(g,})+/w0
j=t Y

is elementary <= wy = 0.
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Torsion divisors

If some D; is not torsion, then [ wi is not elementary.

Otherwise find (g;) = q;D; for g € K(C),q; € N.
d
e.
/(J.Jl = Zjlog(gj)—i—/wg
=1

is elementary <= wy = 0.

By Mordell-Weil, Pic®(Cx) ~ T x Z'.

f complicated = K big = r big.
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A 31-year-old example

= = Groups Q Conversations v Search conversations within sci. ... v €3’3
Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains
@ viewible 2 g e B 2 Dismiss Learn more
<«
A Christmas present for your favorite CAS 274 views X
® Henri Cohen Dec 21,1993, 12:00:13 PM H
® -

Looking in my old files, | found the following INDEFINITE integral
(maple notation)

Int(x/sqrt(x*4+10%x*2-96*x-71),x);

Of course this is an elliptic integral. However, it happens that this
special integral can be computed explicitly. Questions:

1) Can any CAS compute this (not leaving the result with elliptic functions
of course)? You are allowed to load any standard library you like.

2) Can YOU compute this?
3) Find other non-trivial examples.

Note: the experts in the field will know that there is a beautiful and rich
theory behind this kind of computable elliptic integrals. In particular,
relations with points of finite order on elliptic curves, and periodic
continued fraction expansions. This can be considered as a (admittedly
obscure) hint for non-experts.

Nicolas Mascot Algebraic curves



A 31-year-old example

Consider / X dx .
Vx* 4+ 10x2 — 96x — 71
x dx

We introduce C : y? = x* + 10x%> — 96x — 71, and w = ——.
y

C has two points at infinity, oo, and co_, and w has poles at
ooy and oco_ only, both simple and with residue —1 and +1.

The integral won't be elementary unless the divisor

—00, + 0o_ is torsion in Pic®(C).

Luckily, it is 8-torsion, as

g = x4 (y +20)x5 — 128x5 + (15y + 54)x* — (80y + 1408)x® + (27y + 3124)x? — 528yx + 781y + 10001
has divisor (g) = —80c0, + 8c0_.

And even more luckily,

/ x dx 1I (&)
=—lo )
Vx4 +10x2 —96x — 71 8 s\&



Another example

/ V/x8 — 6
——dx
X

= 2\3/x8 —6
<(34—4a)x8+(48m2+(3a5—12a2) VxF=6+(—6a*+72a) ) )

1.2
+iga log 5

8ax+(48Y/x¥ 6 +(—325-1222) /xF—6+(—6a*~72a)
(s + o) log (24 . :

where a° + 48 = 0.

This involves spotting that some divisors on the genus 7 curve
y® = x® — 6 defined over Q(v/—48) are 8-torsion.
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘

o Let C/F, have genus g. Then

_ - #E Fge) 4 L
Z(C/Fq,t) = exp; %t T (1- t)((tl)— qt)

where L(t) € Z[t] determined by #C(F,«) for d < g.

Furthermore, | # Pic®(C) = L(t = 1).
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Testing for torsion

@ Let C curve over a number field K, and T = PicO(C)to,S.
If p is a prime of K above p € N such that C has good
reduction at p, then
‘Reduction mod p is injective on the prime-to-p part of T.‘

o Let C/F, have genus g. Then

_ - #E Fge) 4 L
Z(C/Fq,t) = exp; %t T (1- t)((tl)— qt)

where L(t) € Z[t] determined by #C(F,«) for d < g.

Furthermore, | # Pic®(C) = L(t = 1).

~» Can find m € N: #T | m with py, p, such that p; # p».
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Testing for torsion

~» Can find m € N: #T | m with py, p, such that p; # p».

Let D € Div°(C). If m is small, we compute £(dD) for d | m.
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Testing for torsion

~» Can find m € N: #T | m with py, p, such that p; # p».

Let D € Div°(C). If m is small, we compute £(dD) for d | m.

If m is large, we check the order of D in Pic’(C,,) by using
Makdisi models.
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Testing for torsion

~» Can find m € N: #T | m with py, p, such that p; # p».

Let D € Div°(C). If m is small, we compute £(dD) for d | m.

If m is large, we check the order of D in Pic’(C,,) by using
Makdisi models.

C=crvinit(x~9-y 5+2*x"4*y~2,t,a);
crvprint (C);

crvboundtorsion(C)
crvdivistorsion(C, [2,1;3,-1])
crvfndiv(C,%[2],1);

C=crvinit(y~2-x"6-2%x"5+3*%x"4-8*x"3+8xx-4,t,a) ;
crvprint (C);

crvboundtorsion(C)
crvdivistorsion(C,[1,1;2,-1])
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An example with 91-torsion

Let f(x) = x® — 2x7 + 7x® — 6x° — x* + 10x® — 6x2 + 1.

3 2 .
Then 2x° + 22x° 4+ 47x — 91 dx

x4/ f(x)
= log ( A(x)\/f(x) + B(x)) —91log (x), where A(x) =

2541597392873x% — 50843222146612x% + 503225277935158x%° — 3200657096642275x -+ 14214462728604033x% — 44579238719215767x%+
90673772383763063x°! — 66130213758033706x%° — 273013062842426459x™ + 1133193576266076957x™® — 1828008617851129838x"7 — 132504020527990792x™+
7070565814431437671x7> — 13820814098546580816x"* + 30575014165900971447x7* + 35452028969548856825x"2 — 62530951562265159025x " —
2362196896005727208x"° + 149015656444634579168x" — 167038416607981325445x% — 122694173188447754583x7 + 429854211757535766713x% —
169097783352406328449x% — 555714282810473603258x** + 674362321557037184728x + 312058060938121586273x°2 — 1092460331914324201172x% +
270596774739557247583x%° + 1120954182135661195118x*° — 880939983432258469781x° — 730812820491441338716x" + 1190924815315016075703x°+-
170419784195319443610x°° — 1106709092024065627293x>* + 266886129712577113986x5* + 775632662462383198827x°2 — 447168828060446122800x°" —
414122686014061544643x° + 415264647807791401896x*° + 156832329655217616311x*¢ — 289726675815819589903x*7 — 26171689103841804545x*+
164791091923265170230x*° — 17516989634058353270x* — 79259644357109747485x** + 20976219234985836422x*? + 32932548858101510407x* —
13416187404910977913x*° — 12006472749426198850x*° + 6554509942630071562x + 3896330393014647662x>" — 2667133429777231104x* —
1144094547215340652x + 936921199572723790x>* + 310346663095096540x — 289283382597149122x%2 — 79724891819739155x°" + 79204013977345574x+
19845813628882518x%° — 19273182417066081x°¢ — 4834954816358415x2" + 4150468193299659x% + 1140609211647771x> — 781155386478148x% —
253519603406578x% + 125209807355899x% + 51311674993204x%! — 16187503455853x*0 — 9131100534854x'% + 1456557718427x'® + 1374884510502x1—
30584589801x'6 — 166171016046x° — 18181479207x** + 14582435700x'3 + 3910302361x'2 — 670862648x' — 432933295x' — 27794898x° + 24199247x%+
6635500x7 + 89529x® — 311768x> — 83944x* — 11733x® — 982x? — 47x — 1

and B(x) ~ A(x).

horror

This is related to a rational 91-torsion point in Pic’(y? — f(x)).
(Curve found by Steffen Miiller and Berno Reitsma)
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Final examples

Let —x° + yx + y* = 0 (genus 5).

This involves spotting that some divisor is 11-torsion.
Our implementation takes 1 second; FriCAS takes 18 hours!

Same thing with

X2+ 4y3 16y 1 —x15 4 3yx10 — 3y2x5 + 3
dx = +— log
x3 13x2 13 x4l

where —x’ + yx? + y* = 0 (genus 6, 13-torsion).
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Conclusion

DIFFERENTIATION INTEGRATION
TRY APPLYING

CHAIN POWER
RULE RULE

PRODUCT
QUOTIENT RUE

PHONE CALLS '|73
MATHEMATICIANS
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Thank you!




