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Diophantine equations

The modular method

Fermat equation : Frey (elliptic) curve/Q :  Moduiarity  Cusp modular form :
aP + bP = cP. = y? = (x?—aP)(x + bP). fin S55(2) — {0}.

Compute S»(2) and find out that 5,(2) = {0}.

» No such solution to the Fermat equation can exist !
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— Darmon’s program for AxP 4+ By9 = Cz"

Solution to
AxP + By9 = Cz".
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Generalized Fermat equations

— Darmon’s program for AxP + By9 = Cz"

. Frey variety/F of ) Automorphic form
Solution to Modularity .
AxP 4 By = Czf. = GLy-type and ————= of weight k and level
) conductor 7. 7.

Compute the "space of automorphic forms of weight k and level " and prove
that it doesn't contain 7.

For (A, B, C) = (1,1,1), Darmon has built hyperelliptic/superelliptic Frey curves
of GL,-type over a totally real field F. In this case, many modularity theorems
are known where 7 is a Hilbert modular form of weight 2 and level 7.
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Computing Hilbert modular forms
Following the work of Greenberg-Voight [GV10]

Let
» [ # Q be a totally real

There exist

number field of odd > e .quat'erni.on. algebra B/F
with discriminant (1) C Zg

degree/Q,
N . » a subgroup of units
» 7Zr its ring of integers,
F e e o Ies B* 5 To(n) — PGLy(R)
» 1 C ZFr a level.

Such that (when F has strict class number 1) X := Xo(n) = o(n)\b is a
compact and complex curve and there are Hecke equivariant isomorphisms

S(n) = S¢ (1) = H'(Tg (n), Wk(C))
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Computing Hilbert modular forms
Following the work of Greenberg-Voight [GV10]

Let
» [ # Q be a totally real
number field of odd

degree/Q,
» 7Zr its ring of integers,

There exist

» a quaternion algebra B/F
with discriminant (1) C Zr

» a subgroup of units

B* 5 [o(n) — PGLy(R
» 1 C ZF a level. o(n) 2(R)

Such that (when F has strict class number 1) X := Xo(n) = o(n)\b is a
compact and complex curve and there are Hecke equivariant isomorphisms

S(n) = S¢ (1) = H'(Tg (n), Wk(C))

Where 2 < k is a weight and W (C) = Symy_»(C?).

Idea :
Compute HY(§(n), Wi(C)) with its Hecke action using the topology of X. J
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In this talk

Problem :

Given a weight 2 < k and a co-finite discrete subgroup I' € PSL,(R), compute
H (I, Wi (C))

where Wi (C) = Symy_»(C?). When k = 2 we recover W (C) = C with a trivial
[" action.
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In this talk

Problem :

Given a weight 2 < k and a co-finite discrete subgroup I' C PSLy(R), compute
HY(T', Wi(C))

where Wi (C) = Symy_»(C?). When k = 2 we recover W (C) = C with a trivial
[" action.

Initial idea of approach :

Compute a presentation of I' and solve linear systems — 6(n3)

Our approach

Compute a better-chosen presentation of I and solve a structured linear system

— é(n)

5/31



Theorem :

Assume Xr := '\h has signature (g,v1,...,v¢). Then the group I' has for any
1 < m presentations of the form :

4 i f P
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Theorem :

Assume Xr := '\h has signature (g,v1,...,v¢). Then the group I' has for any
1 < m presentations of the form :

i f — Vi
> (e1,..., 5,71, .- 7f|H, 1 </,()Hj=1’71'_17 'VjJ'J>
>

<al7 b17 ceeydm; bm7 €1,..., e2(g7k)a717 e 77f|
4(g—k)

H[a,,b] H o H%—l v i)

» (a1, bi,..., a5, bg, 71, e [T l[a,,b]HJ A=k 'yj )
which are respectively one word, m-handles and geometric presentations of I.
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Theorem :
Assume Xr := '\h has signature (g,v1,...,v¢). Then the group I' has for any
1 < m presentations of the form :

><elw-~,e2g,'717~'-a'7f|n, 1 ;'()HJ 1% =1 'er./>

>

<al7 bla ceeydm; bm> €1,..., e2(g7k)a’ylv e 77f|
4(g—k)

H[aub] H ¥ H%—l v i)

f 0 g
> <ala b17 ey ag7 bg7fyl? o 77f| H?:l[aia bl] Hj:]_ Vi = 17 ’Y;/j§ ./>
which are respectively one word, m-handles and geometric presentations of I.

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute geometric
presentations of Fuchsian groups from the data of a fundamental domain with a
side pairing. Following Imbert we show how to algorithmically retrieve
intermediate presentations in quasi-linear time and the geometric presentation in
quasi-quadratic time.
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Some notations/conventions :

All of our Fuchsian groups are co-compact.
» [ upper half plane h:={r € C|0 < Im(7)}

» PSL,(R) projective special linear group Acts on b by (i Z) .z = zis

— orientation preserving isometries.

» Co-compact Fuchsian group [ < PSL,(R) Discrete subgroup of PSLy(R) s.t
M\b is compact.

» hyperbolic elements of I generate free part of [ — genus g

» elliptic elements of I elements of finite order, f conjugacy classes of maximal
finite cyclic subgroups with orders — (v1, ..., vf)

> signature (g, 1, ....0f) Uniquely determines [ up to isomorphism.
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Shimura curves

A Fuchsian group is arithmetic if it is obtained as follows, we need
> A totally real field F with 1 < [F : Q] odd.
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Shimura curves

A Fuchsian group is arithmetic if it is obtained as follows, we need
> A totally real field F with 1 < [F : Q] odd.

> A quaternion algebra B/F splitting at exactly 1 place v :
— Bv ~ MQ(FV) = MQ(R)
» An order O C B with units of norm 1 denoted O!.
As shown in [Kat93] from the embedding

B®FR — H"! x My(R)

we obtain an embedding p: O! < PSL,(R) which is discrete and co-compact.
Any I commensurable with a p(O%) is called an arithmetic Fuchsian group.

Shimura curves

Given an arithmetic Fuchsian group I, the quotient S := '\ is good complex
1-orbifold and in particular a Riemann surface. We call any such S a Shimura
curve.
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Representing [

Fundamental domains and side pairings

Fundamental domain : Family of polygons (P;)j=1, ¢, D = L;P; with
B(0,1) = P; C b.

> st Lgerg.D =1

» g DND=10
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Fundamental domain : Family of polygons (P;)j=1, ¢, D = L;P; with

B(0,1) = P; C b.
> st Lgerg.D =1
> g DND=0
Representing a Fuchsian group :
» Fundamental domain P for [ ~ h with OP = ey ... e,, E = {¢;}; edges of P.
» Side pairing 01: E — E, a fixed-point free involution representing the gluing.

» Map p: E — T such that ¢(e) = p(o1(e)) ! and defined by
PNy(e)P ={e}.

Further let 0o ~ E by clock-wise rotation of the polygons.
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Representing [

Fundamental domains and side pairings

Fundamental domain : Family of polygons (P;)j=1, ¢, D = L;P; with

B(0,1) = P; C b.
> st Lgerg.D =1
> g DND=0
Representing a Fuchsian group :
» Fundamental domain P for [ ~ h with OP = ey ... e,, E = {¢;}; edges of P.
» Side pairing 01: E — E, a fixed-point free involution representing the gluing.
» Map p: E — T such that ¢(e) = p(o1(e)) ! and defined by
PNy(e)P ={e}.
Further let oo ~ E by clock-wise rotation of the polygons.

Theorem :

im¢p generates [ and if 0102_1 has cycles {c;}i=1,..r then a a cycle c is either a
relation for ' or an elliptic so that {c"<} is a complete set of relations where v is
the order of c in I'.
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Representing elements of [

Straight line programs

Let {g1,...,g,} = im(p) generate I'. A straight line program is a vector of
instructions v with an out vector o, evaluating in ', such that

> o(l)=gi,...,0(n) = gn.

» v(k) gives group instructions to compute o(k + n) in terms of (0(/))i<ktn-

From the function ¢, one can write v using only the edges E, stored as integers
for example, without evaluating in T.
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Representing elements of [

Straight line programs

Let {g1,...,g,} = im(p) generate I'. A straight line program is a vector of
instructions v with an out vector o, evaluating in ', such that

> o(l)=gi,...,0(n) = gn.

» v(k) gives group instructions to compute o(k + n) in terms of (o(/))i<k+n-
From the function ¢, one can write v using only the edges E, stored as integers
for example, without evaluating in .

Why ?
» Can represent redondant words in quasi-linear space instead of exponential
space.
» Can evaluate in any group.
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Main algorithm

Let [ be an arithmetic Fuchsian group of genus g.
Algorithm :

There exist a O(g) algorithm that given a fundamental domain P and a side
pairing (o1, ) for [ outputs a straight line program expressing one-word and
O(1)-handles presentation of I
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Main algorithm

Let [ be an arithmetic Fuchsian group of genus g.
Algorithm :

There exist a O(g) algorithm that given a fundamental domain P and a side
pairing (o1, ) for [ outputs a straight line program expressing one-word and
O(1)-handles presentation of I

The same algorithm can compute a geometric presentation in time 5(g2).
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Application to Cohomology

Recall : Given a totally real field F we wish to compute S;(7), the space of
Hilbert modular forms of parallel weight 2 over F and level 1. Do as follows :

» Build a suitable quaternion algebra B and an arithmetic fuchsian group
r8(n) of signature (g, v1,...,vr), represented as a fundamental domain P
and side pairing (01, ).

» Compute a one-word presentation

4g f
rOB(,r]): <e177e2g~’yla7,7f|He;j(J)H'Y/: 1, ’Y,V' = 1, i = 1,7f>
j=1 i=1

It has the property that each e; appears exactly twice, once with €,(;) =1
and the other with €,(;,) = —1.
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Application to Cohomology

Endow C with the trivial I'Z(n) structure. From the previous parts with need to
compute

H'(T5 (n), C)
the space of 1-cocycles from '8(n) — C modulo 1-coboundaries. As C is trivial

we have
H*(Ig (1), C) =~ Hom(T'g, C) =~ ((I5)*)*
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Application to Cohomology

Endow C with the trivial I'Z(n) structure. From the previous parts with need to

compute
HY (IS (1), ©)

the space of 1-cocycles from '8(n) — C modulo 1-coboundaries. As C is trivial

we have
HY(r§(n),C) ~ Hom(r'§,C) ~ ((r§)*)*

And from the one word presentation we obtain

£

(rg)"”b ~ 7% @ (H Z/u;Z) /(1,...,1).Z

and using the dual basis we get

HY((r8)* C) ~ 72
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A real example : fundamental domain

> F=Q(V8),

_ V8 3
o (4)

» O the order generated by the columns of

1 0 1/2 1/2 0 0
0 1/2 1/2 1/2 1)2
0 1/2 0 1/2 1)2
1 1/2 0 0 1/2
0 1/2 1/2 0 0
0
0
0

as a Z-module.
0 1/2 1/2 1)2
0 0 1/2 1/2
0 0 0 1/2

Ccocoococooo
CcCoocococoRrO
O coococor~oo

now let I :
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A real example : fundamental domain

Using J. Rickards software for fundamental domains of arithmetic Fuchsian
groups [Ric22] we obtain
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It also ouputs a side pairing (o1, ¢) with

where E = {a,b,c,d,e,a 1, b1, c71 d71 e~} and x7! = oy(x). The polygon
with gluing (P, 01) is represented as the word w = abcdb™tec™'d~telal.
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Presentation of

From before, a presentation of I" is given by

{e(a), ¢(b), p(c), p(d), p(e)}

and if o, is the cycle (abcdb=tec 'd~te~1a~!), then relations can be read off of
the cycles of

o100, = (a)(bAre)(cbrd ) (dc e ™)

in this case, the only elliptic is a with order 3 and we will see that ' has signature
(g,v) = (L,3).
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Where do the relations come from ?

Easy case

If T has signature (g), meaning no elliptics, then I acts totally discontinuously on
b so that by covering space theory I ~ 71 (T'\b).
» Let P be a fundamental polygon for I represented by the word

W:e(;(l)...eq‘;(n).

» Assume G :='\OP has a single vertex v, then n = 4g and by the Van
Kampen theorem m1(M\h, v) = 71 (G, v)/(w = 1).

> By standard results, as G = \/7%, S : m1(G,v) = (ey, ..., e).
Putting everything together :

[~ (er,...,eqw=1)

which is the one-word presentation.
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General case

Dévissage of I

When T has signature (g, v1, ..., vr) — remove elliptic points Y in b, then I acts
totally discontinuously on hh — Y and by covering space theory :

» [ =T(p) where p: h — Y — T\(h — Y) is the covering map and I'(p) the
automorphism group of p.

> There is a short exact sequence
1—=mh-Y,v)>m(M\(h—-Y),Tv)=T(p)—>1

where the last map is given by monodromy : in practice, the side pairing.
Main computation : w1 (F\(h — Y),T.v).

Small problems for applying Van Kampen directly :
» The graph '\OP may not have a single vertex — edges are not loops.

» Elliptic points lie at vertices of P — the embedding
G — V(G) = I'\(h — V(G)) is not combinatorial anymore.
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Solving problem 1

(Use groupoids)

Work with the short exact sequence of groupoids :
rvVomb-Y,I.V)>m\(bH-Y),V)=>T(p) =1

for a vertex set V. The map on the right will then exactly be generated by a side
pairing of the form (o1, ¢).
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Solving problem 2

Have a new set of polygons with centers vertices of G as follows, first cut along
dashed lines

21/31



Then glue along o1 and call G* the new quotient graph (Uf_,P;)/oy :

Remark :

The gluing can be done using the I action but the polygons don't form a
fundamental domain anymore.

22/31



Defining m(M\(h — V(G)), V(G7)) = I with (o7, ")

New side pairing :

For x in E, x* and x are both mapped to ¢(x) through
m(M\(h = V(G)), V(G™)) =T

Indeed o(x) is determined by its action on {x(1/2),x~(1/2), v} where v is the
center of P.

This means that the new side pairing (o7, ¢*) is just (o1, ¢).

23/31



Defining m(M\(h — V(G)), V(G7)) = I with (o7, ")

New side pairing :

For x in E, x* and x are both mapped to ¢(x) through
m(M\(h = V(G)), V(G™)) =T

Indeed o(x) is determined by its action on {x(1/2),x~(1/2), v} where v is the
center of P.

This means that the new side pairing (o7, ¢*) is just (o1, ¢).
> Now see that polygons are represented by the words

a*’ e*b*(a*)fl, (b*)il(d*)ilC*, d*(c*)fl(e*)fl

which are exactly the predicted by the main structure theorem.
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Retrieving the basic presentation of [

Using (groupoid-theoritic)) Van Kampen on the new cell decomposition of
M\b — V(G), with {c, },ev(c) being the cycles of o105 ! and v, being the
counter clock-wise loops ¢, ! we get

m(Mb = V(6), V(67) = (E(6")|evre = 1 v)
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Retrieving the basic presentation of [

Using (groupoid-theoritic)) Van Kampen on the new cell decomposition of
M\b — V(G), with {c, },ev(c) being the cycles of 0102_1 and +, being the
counter clock-wise loops ¢! we get

mi(M\b = V(G), V(G7)) = (E(CT)levyy = 15 v)

Further m(h — I.V(G),T.V(G*)) is generated for each v € V(G*) by the
images g.7, for a small loop +, around v for each g € T.
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Retrieving the basic presentation of [

Using (groupoid-theoritic)) Van Kampen on the new cell decomposition of

M\b — V(G), with {c, },ev(c) being the cycles of 0105 and v, being the
counter clock-wise loops ¢! we get

mi(M\b = V(G), V(G7)) = (E(CT)levyy = 15 v)

Further m(h — I.V(G),T.V(G*)) is generated for each v € V(G*) by the

images g.v, for a small loop 7, around v for each g € I'. Each g., maps to 7.".
So that we get

M~ (E(G*)|cl = 1)

A

24/31



Improving the presentation

From the map h — V(G) — b there is a surjective morphism of groupoids
m(M\(h — V(G)), V(G™)) = m(M\b, V(G™))
and studying its kernel shows that it is made of loops around vertices of V(G).

Goal :

Use the one polygon presentation of the compact surface '\h to compute
m1(F\b, v) and pull it back.
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Improving the presentation

From the map h — V(G) — b there is a surjective morphism of groupoids
m(M\(h — V(G)), V(G™)) = m(M\b, V(G™))
and studying its kernel shows that it is made of loops around vertices of V(G).

Goal :

Use the one polygon presentation of the compact surface '\h to compute
m1(F\b, v) and pull it back.

To do so :

» Find a covering tree in the graph made of polygons (cycles of o;) and edges
those x such that x and x~! lie in different polygons.

» Glue the polygons along the tree — get 1 polygon.
» Pull it back to 1 (F(h — V(G)), V(G)).
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In practice :
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Post-gluing
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Post-flattening

We see that '\b is just a torus.

Call P’ the new glued polygon and ~ be the boundary loop 9P’ in
counter-clockwise orientation.
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Recover a presentation for [

» v liesin m(I'(h — V(G)), V(G*)) we can write it as a product
Y= M2e 37aE"
» A last application of Van Kampen on P’ — V/(G) shows that

7Tl(r\(h - V(G))a V(G*)) - <E(|_\P/),’71, cee 7’7f|W’7 =1 ’y;/i - 1>
- <e*7 C*7/717’725,Y37’y4‘[6*7 C*]7172e*7374(e*)_1 =1

Quotienting by m1(h — . V(G), V(G*)) we get

M= (e*, c*, 7,72, 73, nal[e™, Jrree™y3va(e®) t =1, ()} =1)

which is the one-word (even geometric) presentation.
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Work in progress

For a covering I'1\bh — 2\b given as a permutation representation [ — S,,.
Compute one-word, m-handles and geometric presentations for ', from that of 'y
expected in O(n) time. Permits increasing the level of Sk(n).
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Thanks!
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	Some motivation.

