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Diophantine equations
The modular method

Fermat equation :
ap + bp = cp. ⇒

Frey (elliptic) curve/Q :
y2 = (x2 − ap)(x + bp).

Modularity
======⇒ Cusp modular form :

f in S2(2)− {0}.

Compute S2(2) and find out that S2(2) = {0}.

▶ No such solution to the Fermat equation can exist !
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Generalized Fermat equations
→ Darmon’s program for Axp + Byq = Cz r

Solution to
Axp + Byq = Cz r . ⇒

Frey variety/F of
GLk -type and
conductor η.

Modularity
======⇒

Automorphic form π
of weight k and level
η.

Compute the ”space of automorphic forms of weight k and level η” and prove
that it doesn’t contain π.

For (A,B,C ) = (1, 1, 1), Darmon has built hyperelliptic/superelliptic Frey curves
of GL2-type over a totally real field F . In this case, many modularity theorems
are known where π is a Hilbert modular form of weight 2 and level η.
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Computing Hilbert modular forms
Following the work of Greenberg-Voight [GV10]

Let

▶ F ̸= Q be a totally real
number field of odd
degree/Q,

▶ ZF its ring of integers,

▶ η ⊂ ZF a level.

There exist

▶ a quaternion algebra B/F
with discriminant (1) ⊂ ZF

▶ a subgroup of units
B× ⊃ Γ0(η) → PGL2(R)

Such that (when F has strict class number 1) X := X0(η) = Γ0(η)\h is a
compact and complex curve and there are Hecke equivariant isomorphisms

Sk(η) ≃ SB
k (η) ≃ H1(ΓB0 (η),Wk(C))

Where 2 ≤ k is a weight and Wk(C) = Symk−2(C2).

Idea :

Compute H1(ΓB0 (η),Wk(C)) with its Hecke action using the topology of X .
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In this talk

Problem :

Given a weight 2 ≤ k and a co-finite discrete subgroup Γ ⊂ PSL2(R), compute

H1(Γ,Wk(C))

where Wk(C) = Symk−2(C2). When k = 2 we recover Wk(C) = C with a trivial
Γ action.

Initial idea of approach :

Compute a presentation of Γ and solve linear systems → Õ(n3)

Our approach

Compute a better-chosen presentation of Γ and solve a structured linear system
→ Õ(n)
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Theorem :

Assume XΓ := Γ\h has signature (g , ν1, . . . , νf ). Then the group Γ has for any
1 ≤ m presentations of the form :

▶ ⟨e1, . . . , e2g , γ1, . . . , γf |
∏4g

i=1 e
ϵi
φ(i)

∏f
j=1 γj = 1, γ

νj

j ; j⟩
▶

⟨a1, b1, . . . , am, bm, e1, . . . , e2(g−k),γ1, . . . , γf |
m∏
i=1

[ai , bi ]

4(g−k)∏
j=1

eϵiφ(i)

f∏
j=1

γj = 1, γ
νj

j ; j⟩

▶ ⟨a1, b1, . . . , ag , bg , γ1, . . . , γf |
∏g

i=1[ai , bi ]
∏f

j=1 γj = 1, γ
νj

j ; j⟩
which are respectively one word, m-handles and geometric presentations of Γ.

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute geometric
presentations of Fuchsian groups from the data of a fundamental domain with a
side pairing. Following Imbert we show how to algorithmically retrieve
intermediate presentations in quasi-linear time and the geometric presentation in
quasi-quadratic time.
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Some notations/conventions :

All of our Fuchsian groups are co-compact.

▶ h upper half plane h := {τ ∈ C|0 < Im(τ)}

▶ PSL2(R) projective special linear group Acts on h by

(
a b
c d

)
.z = az+b

cz+d

→ orientation preserving isometries.

▶ Co-compact Fuchsian group Γ ↪→ PSL2(R) Discrete subgroup of PSL2(R) s.t
Γ\h is compact.

▶ hyperbolic elements of Γ generate free part of Γab → genus g

▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal
finite cyclic subgroups with orders → (ν1, . . . , νf )

▶ signature (g , ν1, . . . , νf ) Uniquely determines Γ up to isomorphism.
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Shimura curves

A Fuchsian group is arithmetic if it is obtained as follows, we need

▶ A totally real field F with 1 < [F : Q] odd.

▶ A quaternion algebra B/F splitting at exactly 1 place v :
→ Bv ≃ M2(Fv ) = M2(R).

▶ An order O ⊂ B with units of norm 1 denoted O1.

As shown in [Kat93] from the embedding

B ⊗F R ↪→ Hn−1 ×M2(R)

we obtain an embedding ρ : O1 ↪→ PSL2(R) which is discrete and co-compact.
Any Γ commensurable with a ρ(O1) is called an arithmetic Fuchsian group.

Shimura curves

Given an arithmetic Fuchsian group Γ, the quotient S := Γ\h is good complex
1-orbifold and in particular a Riemann surface. We call any such S a Shimura
curve.
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Representing Γ
Fundamental domains and side pairings

Fundamental domain : Family of polygons (Pi )i=1,...,f , D := ⊔iPi with

B(0, 1) ∼= Pi ⊂ h.

▶ s.t. ⊔g∈Γg .D = h

▶ g .D̊ ∩ D̊ = ∅
Representing a Fuchsian group :

▶ Fundamental domain P for Γ ↷ h with ∂P = e1 . . . en, E = {ei}i edges of P.
▶ Side pairing σ1 : E → E , a fixed-point free involution representing the gluing.

▶ Map φ : E ↪→ Γ such that φ(e) = φ(σ1(e))
−1 and defined by

P ∩ φ(e)P = {e}.
Further let σ2 ↷ E by clock-wise rotation of the polygons.

Theorem :

imφ generates Γ and if σ1σ
−1
2 has cycles {ci}i=1,...,f then a a cycle c is either a

relation for Γ or an elliptic so that {cνc} is a complete set of relations where νc is
the order of c in Γ.
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Representing elements of Γ
Straight line programs

Let {g1, . . . , gn} = im(φ) generate Γ. A straight line program is a vector of
instructions v with an out vector o, evaluating in Γ, such that

▶ o(1) = g1, . . . , o(n) = gn.

▶ v(k) gives group instructions to compute o(k + n) in terms of (o(i))i<k+n.

From the function φ, one can write v using only the edges E , stored as integers
for example, without evaluating in Γ.

Why ?

▶ Can represent redondant words in quasi-linear space instead of exponential
space.

▶ Can evaluate in any group.
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Main algorithm

Let Γ be an arithmetic Fuchsian group of genus g .

Algorithm :

There exist a Õ(g) algorithm that given a fundamental domain P and a side
pairing (σ1, φ) for Γ outputs a straight line program expressing one-word and
O(1)-handles presentation of Γ.

The same algorithm can compute a geometric presentation in time Õ(g2).
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Application to Cohomology

Recall : Given a totally real field F we wish to compute S2(η), the space of
Hilbert modular forms of parallel weight 2 over F and level η. Do as follows :

▶ Build a suitable quaternion algebra B and an arithmetic fuchsian group
ΓB0 (η) of signature (g , ν1, . . . , νf ), represented as a fundamental domain P
and side pairing (σ1, φ).

▶ Compute a one-word presentation

ΓB0 (η) ≃ ⟨e1, . . . , e2g , γ1, . . . , γf |
4g∏
j=1

e
ϵj
ϕ(j)

f∏
i=1

γi = 1, γνi

i = 1; i = 1, . . . , f ⟩

It has the property that each ei appears exactly twice, once with ϵφ(j1) = 1
and the other with ϵφ(j2) = −1.
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Application to Cohomology

Endow C with the trivial ΓB0 (η) structure. From the previous parts with need to
compute

H1(ΓB0 (η),C)

the space of 1-cocycles from ΓB0 (η) → C modulo 1-coboundaries. As C is trivial
we have

H1(ΓB0 (η),C) ≃ Hom(ΓB0 ,C) ≃ ((ΓB0 )
ab)∗

And from the one word presentation we obtain

(
ΓB0
)ab ≃ Z2g ⊕

(
f∏

i=1

Z/νiZ

)
/(1, . . . , 1).Z

and using the dual basis we get

H1((ΓB0 )
ab,C) ≃ Z2g
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A real example : fundamental domain

▶ F = Q(
√
8),

▶ B =

(
−

√
8

2 ,−3

F

)
,

▶ O the order generated by the columns of

1 0 0 0 1/2 1/2 0 0
0 1 0 0 1/2 1/2 1/2 1/2
0 0 1 0 1/2 0 1/2 1/2
0 0 0 1 1/2 0 0 1/2
0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 1/2 1/2 1/2
0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 0 1/2


as a Z-module.

now let Γ := O1.
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A real example : fundamental domain

Using J. Rickards software for fundamental domains of arithmetic Fuchsian
groups [Ric22] we obtain

15 / 31



It also ouputs a side pairing (σ1, φ) with

e −
1

a−1

a

b c

d
b−1

e

c
−1d −1

where E = {a, b, c , d , e, a−1, b−1, c−1, d−1, e−1} and x−1 = σ1(x). The polygon
with gluing (P, σ1) is represented as the word w = abcdb−1ec−1d−1e−1a−1.
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Presentation of Γ

From before, a presentation of Γ is given by

{φ(a), φ(b), φ(c), φ(d), φ(e)}

and if σ2 is the cycle (abcdb−1ec−1d−1e−1a−1), then relations can be read off of
the cycles of

σ1 ◦ σ−1
2 = (a)(bA−1e)(cb−1d−1)(dc−1e−1)

in this case, the only elliptic is a with order 3 and we will see that Γ has signature
(g , ν) = (1, 3).

17 / 31



Where do the relations come from ?
Easy case

If Γ has signature (g), meaning no elliptics, then Γ acts totally discontinuously on
h so that by covering space theory Γ ≃ π1(Γ\h).
▶ Let P be a fundamental polygon for Γ represented by the word

w = eϵ1ϕ(1) . . . e
ϵn
ϕ(n).

▶ Assume G := Γ\∂P has a single vertex v , then n = 4g and by the Van
Kampen theorem π1(Γ\h, v) = π1(G , v)/⟨w = 1⟩.

▶ By standard results, as G =
∨2g

i=1 S
1 : π1(G , v) = ⟨e1, . . . , e2g ⟩.

Putting everything together :

Γ ≃ ⟨e1, . . . , e2g |w = 1⟩

which is the one-word presentation.
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General case
Dévissage of Γ

When Γ has signature (g , ν1, . . . , νf ) → remove elliptic points Y in h, then Γ acts
totally discontinuously on h− Y and by covering space theory :

▶ Γ = Γ(p) where p : h− Y → Γ\(h− Y ) is the covering map and Γ(p) the
automorphism group of p.

▶ There is a short exact sequence

1 → π1(h− Y , v) → π1(Γ\(h− Y ), Γ.v) → Γ(p) → 1

where the last map is given by monodromy : in practice, the side pairing.

Main computation : π1(Γ\(h− Y ), Γ.v).

Small problems for applying Van Kampen directly :

▶ The graph Γ\∂P may not have a single vertex → edges are not loops.

▶ Elliptic points lie at vertices of P → the embedding
G − V (G ) ↪→ Γ\(h− V (G )) is not combinatorial anymore.
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Solving problem 1
(Use groupoids)

Work with the short exact sequence of groupoids :

Γ.V → π1(h− Y , Γ.V ) → π1(Γ\(h− Y ),V ) → Γ(p) → 1

for a vertex set V . The map on the right will then exactly be generated by a side
pairing of the form (σ1, φ).
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Solving problem 2

Have a new set of polygons with centers vertices of G as follows, first cut along
dashed lines

e −
1

a−1

a

b c

d

b−1
e

c
−1d −1

d∗

c∗b∗

a∗

e∗
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Then glue along σ1 and call G∗ the new quotient graph (⊔f
i=1Pi )/σ1 :

>

(a ∗
) −

1

e∗

b∗
c
∗

d∗

Remark :

The gluing can be done using the Γ action but the polygons don’t form a
fundamental domain anymore.
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Defining π1(Γ\(h− V (G )),V (G ∗)) → Γ with (σ∗
1, φ

∗)

New side pairing :

For x in E , x∗ and x are both mapped to φ(x) through

π1(Γ\(h− V (G )),V (G∗)) → Γ

Indeed φ(x) is determined by its action on {x(1/2), x−1(1/2), v} where v is the
center of P.

This means that the new side pairing (σ∗
1 , φ

∗) is just (σ1, φ).

▶ Now see that polygons are represented by the words

a∗, e∗b∗(a∗)−1, (b∗)−1(d∗)−1c∗, d∗(c∗)−1(e∗)−1

which are exactly the predicted by the main structure theorem.
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Retrieving the basic presentation of Γ

Using (groupoid-theoritic)) Van Kampen on the new cell decomposition of
Γ\h− V (G ), with {cv}v∈V (G) being the cycles of σ1σ

−1
2 and γv being the

counter clock-wise loops c−1
v we get

π1(Γ\h− V (G ),V (G∗)) = ⟨E (G∗)|cvγv = 1; v⟩

Further π1(h− Γ.V (G ), Γ.V (G∗)) is generated for each v ∈ V (G∗) by the
images g .γv for a small loop γv around v for each g ∈ Γ. Each g .γv maps to γνv

v .
So that we get

Γ ≃ ⟨E (G∗)|cνv
v = 1⟩
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Improving the presentation

From the map h− V (G ) → h there is a surjective morphism of groupoids

π1(Γ\(h− V (G )),V (G∗)) → π1(Γ\h,V (G∗))

and studying its kernel shows that it is made of loops around vertices of V (G ).

Goal :

Use the one polygon presentation of the compact surface Γ\h to compute
π1(Γ\h, v) and pull it back.

To do so :

▶ Find a covering tree in the graph made of polygons (cycles of σ2) and edges
those x such that x and x−1 lie in different polygons.

▶ Glue the polygons along the tree → get 1 polygon.

▶ Pull it back to π1(Γ(h− V (G )),V (G )).
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In practice :

<

(a ∗
) −

1

e∗

b∗
c
∗

d∗
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Post-gluing

e∗
c
∗

(c∗)−1

(e ∗
) −

1

27 / 31



Post-flattening

We see that Γ\h is just a torus.

e∗

(c∗)−1

(e∗)−1

c∗

Call P ′ the new glued polygon and γ be the boundary loop ∂P ′ in
counter-clockwise orientation.
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Recover a presentation for Γ

▶ γ lies in π1(Γ(h− V (G )),V (G∗)) we can write it as a product
γ = γ1γ2e

∗γ3γ4ē
∗.

▶ A last application of Van Kampen on P ′ − V (G ) shows that

π1(Γ\(h− V (G )),V (G∗)) = ⟨E (Γ\P ′), γ1, . . . , γf |wγ = 1, γνi

i = 1⟩
= ⟨e∗, c∗, γ1, γ2, γ3, γ4|[e∗, c∗]γ1γ2e∗γ3γ4(e∗)−1 = 1,

a∗γ1 = 1⟩

Quotienting by π1(h− Γ.V (G ),V (G∗)) we get

Γ = ⟨e∗, c∗, γ1, γ2, γ3, γ4|[e∗, c∗]γ1γ2e∗γ3γ4(e∗)−1 = 1, (a∗)3 = 1⟩

which is the one-word (even geometric) presentation.
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Work in progress

For a covering Γ1\h → Γ2\h given as a permutation representation Γ1 → Sn.
Compute one-word, m-handles and geometric presentations for Γ2 from that of Γ1
expected in Õ(n) time. Permits increasing the level of Sk(η).
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Thanks!
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	Some motivation.

