

Cohomology of Shimura curves in quasi-linear time : A topological approach.

Rayane Baït - Aurel Page

January 16th, 2026

Diophantine equations

The modular method

Fermat equation : $a^p + b^p = c^p$. Frey (elliptic) curve/ \mathbb{Q} : $y^2 = (x^2 - a^p)(x + b^p)$. $\xrightarrow{\text{Modularity}}$ Cusp modular form : f in $S_2(2) - \{0\}$.

Compute $S_2(2)$ and find out that $S_2(2) = \{0\}$.

► *No such solution to the Fermat equation can exist !*

Diophantine equations

The modular method

$$\text{Fermat equation : } a^p + b^p = c^p. \quad \Rightarrow \quad \text{Frey (elliptic) curve } / \mathbb{Q} : y^2 = (x^2 - a^p)(x + b^p). \xrightarrow{\text{Modularity}} \text{Cusp modular form : } f \text{ in } S_2(2) - \{0\}.$$

Compute $S_2(2)$ and find out that $S_2(2) = \{0\}$.

► *No such solution to the Fermat equation can exist !*

Diophantine equations

The modular method

$$\text{Fermat equation : } a^p + b^p = c^p. \quad \Rightarrow \quad \text{Frey (elliptic) curve}/\mathbb{Q} : y^2 = (x^2 - a^p)(x + b^p). \xrightarrow{\text{Modularity}} \text{Cusp modular form : } f \text{ in } S_2(2) - \{0\}.$$

Compute $S_2(2)$ and find out that $S_2(2) = \{0\}$.

- *No such solution to the Fermat equation can exist !*

Diophantine equations

The modular method

$$\text{Fermat equation : } a^p + b^p = c^p. \quad \Rightarrow \quad \text{Frey (elliptic) curve}/\mathbb{Q} : y^2 = (x^2 - a^p)(x + b^p). \quad \xrightarrow{\text{Modularity}} \text{Cusp modular form : } f \text{ in } S_2(2) - \{0\}.$$

Compute $S_2(2)$ and find out that $S_2(2) = \{0\}$.

► *No such solution to the Fermat equation can exist !*

Diophantine equations

The modular method

$$\text{Fermat equation : } a^p + b^p = c^p. \quad \Rightarrow \quad \text{Frey (elliptic) curve}/\mathbb{Q} : y^2 = (x^2 - a^p)(x + b^p). \xrightarrow{\text{Modularity}} \text{Cusp modular form : } f \text{ in } S_2(2) - \{0\}.$$

Compute $S_2(2)$ and find out that $S_2(2) = \{0\}$.

- *No such solution to the Fermat equation can exist !*

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to
 $Ax^p + By^q = Cz^r$.

⇒ Frey variety F of
 GL_k -type and
conductor η .

Modularity
Automorphic form π
of weight k and level
 η .

Compute the "space of automorphic forms of weight k and level η " and prove
that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves
of GL_2 -type over a totally real field F . In this case, many modularity theorems
are known where π is a Hilbert modular form of weight 2 and level η .

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to $Ax^p + By^q = Cz^r$. \Rightarrow Frey variety F of GL_k -type and conductor η .

Modularity $\xrightarrow{\hspace{1cm}}$ Automorphic form π of weight k and level η .

Compute the "space of automorphic forms of weight k and level η " and prove that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves of GL_2 -type over a totally real field F . In this case, many modularity theorems are known where π is a Hilbert modular form of weight 2 and level η .

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to $Ax^p + By^q = Cz^r$. \Rightarrow Frey variety/ F of GL_k -type and conductor η .

Modularity $\xrightarrow{\hspace{1cm}}$ Automorphic form π of weight k and level η .

Compute the "space of automorphic forms of weight k and level η " and prove that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves of GL_2 -type over a totally real field F . In this case, many modularity theorems are known where π is a Hilbert modular form of weight 2 and level η .

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to $Ax^p + By^q = Cz^r$. \Rightarrow Frey variety F of GL_k -type and conductor η .

Modularity $\xrightarrow{\hspace{1cm}}$ Automorphic form π of weight k and level η .

Compute the "space of automorphic forms of weight k and level η " and prove that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves of GL_2 -type over a totally real field F . In this case, many modularity theorems are known where π is a Hilbert modular form of weight 2 and level η .

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to $Ax^p + By^q = Cz^r$. \Rightarrow Frey variety F of GL_k -type and conductor η .

Modularity $\xrightarrow{\hspace{1cm}}$ Automorphic form π of weight k and level η .

Compute the "space of automorphic forms of weight k and level η " and prove that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves of GL_2 -type over a totally real field F . In this case, many modularity theorems are known where π is a Hilbert modular form of weight 2 and level η .

Generalized Fermat equations

→ Darmon's program for $Ax^p + By^q = Cz^r$

Solution to $Ax^p + By^q = Cz^r$. \Rightarrow Frey variety F of GL_k -type and conductor η .

Modularity $\xrightarrow{\hspace{1cm}}$ Automorphic form π of weight k and level η .

Compute the "space of automorphic forms of weight k and level η " and prove that it doesn't contain π .

For $(A, B, C) = (1, 1, 1)$, Darmon has built hyperelliptic/superelliptic Frey curves of GL_2 -type over a totally real field F . In this case, many modularity theorems are known where π is a Hilbert modular form of weight 2 and level η .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a compact and complex curve and there are Hecke equivariant isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a **compact** and complex curve and there are **Hecke equivariant** isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

Computing Hilbert modular forms

Following the work of Greenberg-Voight [GV10]

Let

- ▶ $F \neq \mathbb{Q}$ be a totally real number field of odd degree/ \mathbb{Q} ,
- ▶ \mathbb{Z}_F its ring of integers,
- ▶ $\eta \subset \mathbb{Z}_F$ a level.

There exist

- ▶ a quaternion algebra B/F with discriminant $(1) \subset \mathbb{Z}_F$
- ▶ a subgroup of units $B^\times \supset \Gamma_0(\eta) \rightarrow PGL_2(\mathbb{R})$

Such that (when F has strict class number 1) $X := X_0(\eta) = \Gamma_0(\eta) \backslash \mathfrak{h}$ is a **compact** and complex curve and there are **Hecke equivariant** isomorphisms

$$S_k(\eta) \simeq S_k^B(\eta) \simeq H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$$

Where $2 \leq k$ is a weight and $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$.

Idea :

Compute $H^1(\Gamma_0^B(\eta), W_k(\mathbb{C}))$ with its Hecke action using the topology of X .

In this talk

Problem :

Given a weight $2 \leq k$ and a co-finite discrete subgroup $\Gamma \subset PSL_2(\mathbb{R})$, compute

$$H^1(\Gamma, W_k(\mathbb{C}))$$

where $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$. When $k = 2$ we recover $W_k(\mathbb{C}) = \mathbb{C}$ with a trivial Γ action.

Initial idea of approach :

Compute a presentation of Γ and solve linear systems $\rightarrow \tilde{O}(n^3)$

Our approach

Compute a better-chosen presentation of Γ and solve a structured linear system
 $\rightarrow \tilde{O}(n)$

In this talk

Problem :

Given a weight $2 \leq k$ and a co-finite discrete subgroup $\Gamma \subset PSL_2(\mathbb{R})$, compute

$$H^1(\Gamma, W_k(\mathbb{C}))$$

where $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$. When $k = 2$ we recover $W_k(\mathbb{C}) = \mathbb{C}$ with a trivial Γ action.

Initial idea of approach :

Compute a presentation of Γ and solve linear systems $\rightarrow \tilde{O}(n^3)$

Our approach

Compute a better-chosen presentation of Γ and solve a structured linear system
 $\rightarrow \tilde{O}(n)$

In this talk

Problem :

Given a weight $2 \leq k$ and a co-finite discrete subgroup $\Gamma \subset PSL_2(\mathbb{R})$, compute

$$H^1(\Gamma, W_k(\mathbb{C}))$$

where $W_k(\mathbb{C}) = Sym_{k-2}(\mathbb{C}^2)$. When $k = 2$ we recover $W_k(\mathbb{C}) = \mathbb{C}$ with a trivial Γ action.

Initial idea of approach :

Compute a presentation of Γ and solve linear systems $\rightarrow \tilde{O}(n^3)$

Our approach

Compute a better-chosen presentation of Γ and solve a structured linear system
 $\rightarrow \tilde{O}(n)$

Theorem :

Assume $X_\Gamma := \Gamma \backslash \mathfrak{h}$ has signature (g, ν_1, \dots, ν_f) . Then the group Γ has for any $1 \leq m$ presentations of the form :

► $\langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f | \prod_{i=1}^{4g} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$

►

$$\langle a_1, b_1, \dots, a_m, b_m, e_1, \dots, e_{2(g-k)}, \gamma_1, \dots, \gamma_f |$$

$$\prod_{i=1}^m [a_i, b_i] \prod_{j=1}^{4(g-k)} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

► $\langle a_1, b_1, \dots, a_g, b_g, \gamma_1, \dots, \gamma_f | \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$

which are respectively one word, m -handles and geometric presentations of Γ .

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute *geometric* presentations of Fuchsian groups from the data of a fundamental domain with a side pairing. Following Imbert we show how to algorithmically retrieve intermediate presentations in quasi-linear time and the geometric presentation in quasi-quadratic time.

Theorem :

Assume $X_\Gamma := \Gamma \backslash \mathfrak{h}$ has signature (g, ν_1, \dots, ν_f) . Then the group Γ has for any $1 \leq m$ presentations of the form :

- ▶ $\langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f | \prod_{i=1}^{4g} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$
- ▶

$$\langle a_1, b_1, \dots, a_m, b_m, e_1, \dots, e_{2(g-k)}, \gamma_1, \dots, \gamma_f |$$

$$\prod_{i=1}^m [a_i, b_i] \prod_{j=1}^{4(g-k)} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

- ▶ $\langle a_1, b_1, \dots, a_g, b_g, \gamma_1, \dots, \gamma_f | \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$

which are respectively one word, m -handles and geometric presentations of Γ .

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute *geometric* presentations of Fuchsian groups from the data of a fundamental domain with a side pairing. Following Imbert we show how to algorithmically retrieve intermediate presentations in quasi-linear time and the geometric presentation in quasi-quadratic time.

Theorem :

Assume $X_\Gamma := \Gamma \backslash \mathfrak{h}$ has signature (g, ν_1, \dots, ν_f) . Then the group Γ has for any $1 \leq m$ presentations of the form :

$$\blacktriangleright \langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f | \prod_{i=1}^{4g} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

►

$$\langle a_1, b_1, \dots, a_m, b_m, e_1, \dots, e_{2(g-k)}, \gamma_1, \dots, \gamma_f |$$

$$\prod_{i=1}^m [a_i, b_i] \prod_{j=1}^{4(g-k)} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

$$\blacktriangleright \langle a_1, b_1, \dots, a_g, b_g, \gamma_1, \dots, \gamma_f | \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

which are respectively one word, m -handles and geometric presentations of Γ .

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute *geometric* presentations of Fuchsian groups from the data of a fundamental domain with a side pairing. Following Imbert we show how to algorithmically retrieve intermediate presentations in quasi-linear time and the geometric presentation in quasi-quadratic time.

Theorem :

Assume $X_\Gamma := \Gamma \backslash \mathfrak{h}$ has signature (g, ν_1, \dots, ν_f) . Then the group Γ has for any $1 \leq m$ presentations of the form :

$$\blacktriangleright \langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f | \prod_{i=1}^{4g} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

►

$$\langle a_1, b_1, \dots, a_m, b_m, e_1, \dots, e_{2(g-k)}, \gamma_1, \dots, \gamma_f |$$

$$\prod_{i=1}^m [a_i, b_i] \prod_{j=1}^{4(g-k)} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

$$\blacktriangleright \langle a_1, b_1, \dots, a_g, b_g, \gamma_1, \dots, \gamma_f | \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

which are respectively one word, m -handles and geometric presentations of Γ .

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute *geometric* presentations of Fuchsian groups from the data of a fundamental domain with a side pairing. Following Imbert we show how to algorithmically retrieve intermediate presentations in quasi-linear time and the geometric presentation in quasi-quadratic time.

Theorem :

Assume $X_\Gamma := \Gamma \backslash \mathfrak{h}$ has signature (g, ν_1, \dots, ν_f) . Then the group Γ has for any $1 \leq m$ presentations of the form :

- ▶ $\langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f | \prod_{i=1}^{4g} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$
- ▶

$\langle a_1, b_1, \dots, a_m, b_m, e_1, \dots, e_{2(g-k)}, \gamma_1, \dots, \gamma_f |$

$$\prod_{i=1}^m [a_i, b_i] \prod_{j=1}^{4(g-k)} e_{\varphi(i)}^{\epsilon_i} \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$$

- ▶ $\langle a_1, b_1, \dots, a_g, b_g, \gamma_1, \dots, \gamma_f | \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^f \gamma_j = 1, \gamma_j^{\nu_j}; j \rangle$

which are respectively one word, m -handles and geometric presentations of Γ .

In [Imb01; Imb99] Imbert gives a combinatorial procedure to compute *geometric* presentations of Fuchsian groups from the data of a **fundamental domain** with a **side pairing**. Following Imbert we show how to algorithmically retrieve intermediate presentations in quasi-linear time and the geometric presentation in quasi-quadratic time.

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathfrak{h} upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow orientation preserving isometries.
- ▶ Co-compact Fuchsian group $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ Discrete subgroup of $PSL_2(\mathbb{R})$ s.t $\Gamma \backslash \mathfrak{h}$ is compact.
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) Uniquely determines Γ up to isomorphism.

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathbb{H} upper half plane $\mathbb{H} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathbb{H} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow *orientation preserving* isometries.
- ▶ Co-compact Fuchsian group $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ Discrete subgroup of $PSL_2(\mathbb{R})$ s.t $\Gamma \backslash \mathbb{H}$ is *compact*.
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) *Uniquely* determines Γ up to isomorphism.

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathfrak{h} upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow *orientation preserving* isometries.
- ▶ **Co-compact Fuchsian group** $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ *Discrete subgroup of $PSL_2(\mathbb{R})$ s.t. $\Gamma \backslash \mathfrak{h}$ is compact.*
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) *Uniquely determines Γ up to isomorphism.*

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathfrak{h} upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow *orientation preserving* isometries.
- ▶ Co-compact Fuchsian group $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ Discrete subgroup of $PSL_2(\mathbb{R})$ s.t $\Gamma \backslash \mathfrak{h}$ is compact.
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) Uniquely determines Γ up to isomorphism.

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathfrak{h} upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow *orientation preserving* isometries.
- ▶ Co-compact Fuchsian group $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ Discrete subgroup of $PSL_2(\mathbb{R})$ s.t $\Gamma \backslash \mathfrak{h}$ is compact.
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) *Uniquely* determines Γ up to isomorphism.

Some notations/conventions :

All of our Fuchsian groups are *co-compact*.

- ▶ \mathfrak{h} upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} \mid 0 < \text{Im}(\tau)\}$
- ▶ $PSL_2(\mathbb{R})$ projective special linear group Acts on \mathfrak{h} by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$
 \rightarrow *orientation preserving* isometries.
- ▶ Co-compact Fuchsian group $\Gamma \hookrightarrow PSL_2(\mathbb{R})$ Discrete subgroup of $PSL_2(\mathbb{R})$ s.t $\Gamma \backslash \mathfrak{h}$ is compact.
- ▶ hyperbolic elements of Γ generate free part of $\Gamma^{ab} \rightarrow$ genus g
- ▶ elliptic elements of Γ elements of finite order, f conjugacy classes of maximal finite cyclic subgroups with orders $\rightarrow (\nu_1, \dots, \nu_f)$
- ▶ signature (g, ν_1, \dots, ν_f) Uniquely determines Γ up to isomorphism.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- A quaternion algebra B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- An order $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*. Any Γ *commensurable* with a $\rho(O^1)$ is called an arithmetic Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is a good complex 1-orbifold and in particular a Riemann surface. We call any such S a Shimura curve.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- ▶ A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- ▶ A **quaternion algebra** B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- ▶ An order $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*. Any Γ *commensurable* with a $\rho(O^1)$ is called an arithmetic Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is a good complex 1-orbifold and in particular a Riemann surface. We call any such S a Shimura curve.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- ▶ A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- ▶ A **quaternion algebra** B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- ▶ An **order** $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*. Any Γ *commensurable* with a $\rho(O^1)$ is called an arithmetic Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is good complex 1-orbifold and in particular a Riemann surface. We call any such S a Shimura curve.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- ▶ A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- ▶ A **quaternion algebra** B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- ▶ An **order** $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*.
Any Γ *commensurable* with a $\rho(O^1)$ is called an arithmetic Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is good complex 1-orbifold and in particular a Riemann surface. We call any such S a Shimura curve.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- ▶ A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- ▶ A **quaternion algebra** B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- ▶ An **order** $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*. Any Γ *commensurable* with a $\rho(O^1)$ is called an **arithmetic** Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is good complex 1-orbifold and in particular a Riemann surface. We call any such S a Shimura curve.

Shimura curves

A Fuchsian group is **arithmetic** if it is obtained as follows, we need

- ▶ A **totally real** field F with $1 < [F : \mathbb{Q}]$ odd.
- ▶ A **quaternion algebra** B/F *splitting* at exactly 1 place v :
 $\rightarrow B_v \simeq M_2(F_v) = M_2(\mathbb{R})$.
- ▶ An **order** $O \subset B$ with units of norm 1 denoted O^1 .

As shown in [Kat93] from the embedding

$$B \otimes_F \mathbb{R} \hookrightarrow \mathbb{H}^{n-1} \times M_2(\mathbb{R})$$

we obtain an embedding $\rho: O^1 \hookrightarrow PSL_2(\mathbb{R})$ which is *discrete* and *co-compact*. Any Γ *commensurable* with a $\rho(O^1)$ is called an **arithmetic** Fuchsian group.

Shimura curves

Given an *arithmetic* Fuchsian group Γ , the quotient $S := \Gamma \backslash \mathbb{H}$ is **good complex 1-orbifold** and in particular a **Riemann surface**. We call any such S a **Shimura curve**.

Representing Γ

Fundamental domains and side pairings

Fundamental domain : Family of polygons $(P_i)_{i=1,\dots,f}$, $D := \sqcup_i P_i$ with $B(0, 1) \cong P_i \subset \mathfrak{h}$.

- ▶ s.t. $\sqcup_{g \in \Gamma} g.D = \mathfrak{h}$
- ▶ $g.D \cap \mathring{D} = \emptyset$

Representing a Fuchsian group :

- ▶ Fundamental domain P for $\Gamma \curvearrowright \mathfrak{h}$ with $\partial P = e_1 \dots e_n$, $E = \{e_i\}$; edges of P .
- ▶ Side pairing $\sigma_1: E \rightarrow E$, a fixed-point free involution representing the gluing.
- ▶ Map $\varphi: E \hookrightarrow \Gamma$ such that $\varphi(e) = \varphi(\sigma_1(e))^{-1}$ and defined by $P \cap \varphi(e)P = \{e\}$.

Further let $\sigma_2 \curvearrowright E$ by clock-wise rotation of the polygons.

Theorem :

$\text{im } \varphi$ generates Γ and if $\sigma_1 \sigma_2^{-1}$ has cycles $\{c_i\}_{i=1,\dots,f}$ then a a cycle c is either a relation for Γ or an elliptic so that $\{c^{\nu_c}\}$ is a complete set of relations where ν_c is the order of c in Γ .

Representing Γ

Fundamental domains and side pairings

Fundamental domain : Family of polygons $(P_i)_{i=1,\dots,f}$, $D := \sqcup_i P_i$ with $\overline{B(0,1)} \cong P_i \subset \mathfrak{h}$.

- ▶ s.t. $\sqcup_{g \in \Gamma} g.D = \mathfrak{h}$
- ▶ $g.D \cap \overset{\circ}{D} = \emptyset$

Representing a Fuchsian group :

- ▶ **Fundamental domain** P for $\Gamma \curvearrowright \mathfrak{h}$ with $\partial P = e_1 \dots e_n$, $E = \{e_i\}$; edges of P .
- ▶ **Side pairing** $\sigma_1: E \rightarrow E$, a fixed-point free involution representing the gluing.
- ▶ **Map** $\varphi: E \hookrightarrow \Gamma$ such that $\varphi(e) = \varphi(\sigma_1(e))^{-1}$ and defined by $P \cap \varphi(e)P = \{e\}$.

Further let $\sigma_2 \curvearrowright E$ by clock-wise rotation of the polygons.

Theorem :

$\text{im } \varphi$ generates Γ and if $\sigma_1 \sigma_2^{-1}$ has cycles $\{c_i\}_{i=1,\dots,f}$ then a cycle c is either a relation for Γ or an elliptic so that $\{c^{\nu_c}\}$ is a complete set of relations where ν_c is the order of c in Γ .

Representing Γ

Fundamental domains and side pairings

Fundamental domain : Family of polygons $(P_i)_{i=1,\dots,f}$, $D := \sqcup_i P_i$ with $\overline{B(0,1)} \cong P_i \subset \mathfrak{h}$.

- ▶ s.t. $\sqcup_{g \in \Gamma} g.D = \mathfrak{h}$
- ▶ $g.D \cap \overset{\circ}{D} = \emptyset$

Representing a Fuchsian group :

- ▶ **Fundamental domain** P for $\Gamma \curvearrowright \mathfrak{h}$ with $\partial P = e_1 \dots e_n$, $E = \{e_i\}$; edges of P .
- ▶ **Side pairing** $\sigma_1: E \rightarrow E$, a fixed-point free involution representing the gluing.
- ▶ **Map** $\varphi: E \hookrightarrow \Gamma$ such that $\varphi(e) = \varphi(\sigma_1(e))^{-1}$ and defined by $P \cap \varphi(e)P = \{e\}$.

Further let $\sigma_2 \curvearrowright E$ by clock-wise rotation of the polygons.

Theorem :

$\text{im } \varphi$ generates Γ and if $\sigma_1 \sigma_2^{-1}$ has cycles $\{c_i\}_{i=1,\dots,f}$ then a cycle c is either a relation for Γ or an elliptic so that $\{c^{\nu_c}\}$ is a complete set of relations where ν_c is the order of c in Γ .

Representing elements of Γ

Straight line programs

Let $\{g_1, \dots, g_n\} = \text{im}(\varphi)$ generate Γ . A **straight line program** is a vector of instructions v with an out vector o , evaluating in Γ , such that

- ▶ $o(1) = g_1, \dots, o(n) = g_n$.
- ▶ $v(k)$ gives group instructions to compute $o(k+n)$ in terms of $(o(i))_{i < k+n}$.

From the function φ , one can write v using only the edges E , stored as integers for example, without evaluating in Γ .

Why ?

- ▶ Can represent redundant words in quasi-linear space instead of exponential space.
- ▶ Can evaluate in any group.

Representing elements of Γ

Straight line programs

Let $\{g_1, \dots, g_n\} = \text{im}(\varphi)$ generate Γ . A **straight line program** is a vector of instructions v with an out vector o , evaluating in Γ , such that

- ▶ $o(1) = g_1, \dots, o(n) = g_n$.
- ▶ $v(k)$ gives group instructions to compute $o(k+n)$ in terms of $(o(i))_{i < k+n}$.

From the function φ , one can write v using only the edges E , stored as integers for example, without evaluating in Γ .

Why ?

- ▶ Can represent redundant words in quasi-linear space instead of exponential space.
- ▶ Can evaluate in any group.

Main algorithm

Let Γ be an arithmetic Fuchsian group of genus g .

Algorithm :

There exist a $\tilde{O}(g)$ algorithm that given a fundamental domain P and a side pairing (σ_1, φ) for Γ outputs a straight line program expressing one-word and $O(1)$ -handles presentation of Γ .

The same algorithm can compute a geometric presentation in time $\tilde{O}(g^2)$.

Main algorithm

Let Γ be an arithmetic Fuchsian group of genus g .

Algorithm :

There exist a $\tilde{O}(g)$ algorithm that given a fundamental domain P and a side pairing (σ_1, φ) for Γ outputs a straight line program expressing one-word and $O(1)$ -handles presentation of Γ .

The same algorithm can compute a geometric presentation in time $\tilde{O}(g^2)$.

Application to Cohomology

Recall : Given a totally real field F we wish to compute $S_2(\eta)$, the space of Hilbert modular forms of parallel weight 2 over F and level η . Do as follows :

- ▶ Build a suitable quaternion algebra B and an arithmetic fuchsian group $\Gamma_0^B(\eta)$ of signature (g, ν_1, \dots, ν_f) , represented as a fundamental domain P and side pairing (σ_1, φ) .
- ▶ Compute a one-word presentation

$$\Gamma_0^B(\eta) \simeq \langle e_1, \dots, e_{2g}, \gamma_1, \dots, \gamma_f \mid \prod_{j=1}^{4g} e_{\phi(j)}^{\epsilon_j} \prod_{i=1}^f \gamma_i = 1, \gamma_i^{\nu_i} = 1; i = 1, \dots, f \rangle$$

It has the property that each e_i appears exactly twice, once with $\epsilon_{\varphi(j_1)} = 1$ and the other with $\epsilon_{\varphi(j_2)} = -1$.

Application to Cohomology

Endow \mathbb{C} with the trivial $\Gamma_0^B(\eta)$ structure. From the previous parts we need to compute

$$H^1(\Gamma_0^B(\eta), \mathbb{C})$$

the space of 1-cocycles from $\Gamma_0^B(\eta) \rightarrow \mathbb{C}$ modulo 1-coboundaries. As \mathbb{C} is trivial we have

$$H^1(\Gamma_0^B(\eta), \mathbb{C}) \simeq \text{Hom}(\Gamma_0^B, \mathbb{C}) \simeq ((\Gamma_0^B)^{ab})^*$$

And from the one word presentation we obtain

$$(\Gamma_0^B)^{ab} \simeq \mathbb{Z}^{2g} \oplus \left(\prod_{i=1}^f \mathbb{Z}/\nu_i \mathbb{Z} \right) / (1, \dots, 1) \cdot \mathbb{Z}$$

and using the dual basis we get

$$H^1((\Gamma_0^B)^{ab}, \mathbb{C}) \simeq \mathbb{Z}^{2g}$$

Application to Cohomology

Endow \mathbb{C} with the trivial $\Gamma_0^B(\eta)$ structure. From the previous parts we need to compute

$$H^1(\Gamma_0^B(\eta), \mathbb{C})$$

the space of 1-cocycles from $\Gamma_0^B(\eta) \rightarrow \mathbb{C}$ modulo 1-coboundaries. As \mathbb{C} is trivial we have

$$H^1(\Gamma_0^B(\eta), \mathbb{C}) \simeq \text{Hom}(\Gamma_0^B, \mathbb{C}) \simeq ((\Gamma_0^B)^{ab})^*$$

And from the one word presentation we obtain

$$(\Gamma_0^B)^{ab} \simeq \mathbb{Z}^{2g} \oplus \left(\prod_{i=1}^f \mathbb{Z}/\nu_i \mathbb{Z} \right) / (1, \dots, 1) \cdot \mathbb{Z}$$

and using the dual basis we get

$$H^1((\Gamma_0^B)^{ab}, \mathbb{C}) \simeq \mathbb{Z}^{2g}$$

A real example : fundamental domain

- ▶ $F = \mathbb{Q}(\sqrt{8})$,
- ▶ $B = \left(\frac{-\frac{\sqrt{8}}{2}, -3}{F} \right)$,
- ▶ O the order generated by the columns of

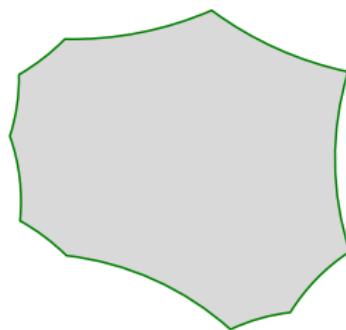
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 & 1/2 & 1/2 \\ 0 & 0 & 1 & 0 & 1/2 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 & 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/2 \end{pmatrix}$$

as a \mathbb{Z} -module.

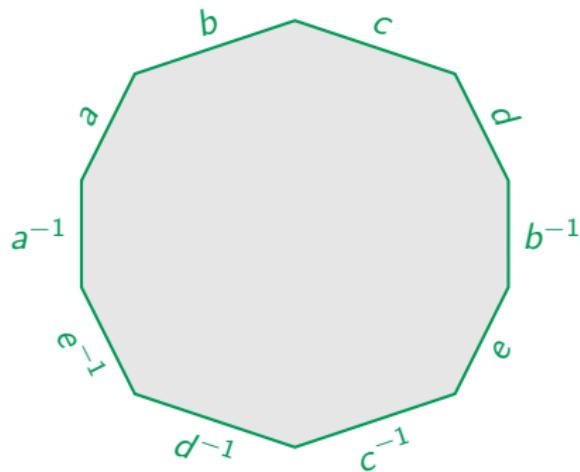
now let $\Gamma := O^1$.

A real example : fundamental domain

Using J. Rickards software for fundamental domains of arithmetic Fuchsian groups [Ric22] we obtain



It also outputs a side pairing (σ_1, φ) with



where $E = \{a, b, c, d, e, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}\}$ and $x^{-1} = \sigma_1(x)$. The polygon with gluing (P, σ_1) is represented as the word $w = abcd b^{-1} e c^{-1} d^{-1} e^{-1} a^{-1}$.

Presentation of Γ

From before, a presentation of Γ is given by

$$\{\varphi(a), \varphi(b), \varphi(c), \varphi(d), \varphi(e)\}$$

and if σ_2 is the cycle $(abcb^{-1}ec^{-1}d^{-1}e^{-1}a^{-1})$, then relations can be read off of the cycles of

$$\sigma_1 \circ \sigma_2^{-1} = (a)(bA^{-1}e)(cb^{-1}d^{-1})(dc^{-1}e^{-1})$$

in this case, the only elliptic is a with order 3 and we will see that Γ has signature $(g, \nu) = (1, 3)$.

Where do the relations come from ?

Easy case

If Γ has signature (g) , meaning no elliptics, then Γ acts totally discontinuously on \mathbb{H} so that by covering space theory $\Gamma \simeq \pi_1(\Gamma \backslash \mathbb{H})$.

- ▶ Let P be a fundamental polygon for Γ represented by the word $w = e_{\phi(1)}^{\epsilon_1} \cdots e_{\phi(n)}^{\epsilon_n}$.
- ▶ Assume $G := \Gamma \backslash \partial P$ has a single vertex v , then $n = 4g$ and by the Van Kampen theorem $\pi_1(\Gamma \backslash \mathbb{H}, v) = \pi_1(G, v) / \langle w = 1 \rangle$.
- ▶ By standard results, as $G = \bigvee_{i=1}^{2g} S^1 : \pi_1(G, v) = \langle e_1, \dots, e_{2g} \rangle$.

Putting everything together :

$$\Gamma \simeq \langle e_1, \dots, e_{2g} \mid w = 1 \rangle$$

which is the one-word presentation.

General case

Dévissage of Γ

When Γ has signature (g, ν_1, \dots, ν_f) \rightarrow remove elliptic points Y in \mathfrak{h} , then Γ acts totally discontinuously on $\mathfrak{h} - Y$ and by covering space theory :

- ▶ $\Gamma = \Gamma(p)$ where $p: \mathfrak{h} - Y \rightarrow \Gamma \backslash (\mathfrak{h} - Y)$ is the covering map and $\Gamma(p)$ the automorphism group of p .
- ▶ There is a short exact sequence

$$1 \rightarrow \pi_1(\mathfrak{h} - Y, v) \rightarrow \pi_1(\Gamma \backslash (\mathfrak{h} - Y), \Gamma \cdot v) \rightarrow \Gamma(p) \rightarrow 1$$

where the last map is given by monodromy : in practice, the side pairing.

Main computation : $\pi_1(\Gamma \backslash (\mathfrak{h} - Y), \Gamma \cdot v)$.

Small problems for applying Van Kampen directly :

- ▶ The graph $\Gamma \backslash \partial P$ may not have a single vertex \rightarrow edges are not loops.
- ▶ Elliptic points lie at vertices of $P \rightarrow$ the embedding $G - V(G) \hookrightarrow \Gamma \backslash (\mathfrak{h} - V(G))$ is not combinatorial anymore.

Solving problem 1

(Use groupoids)

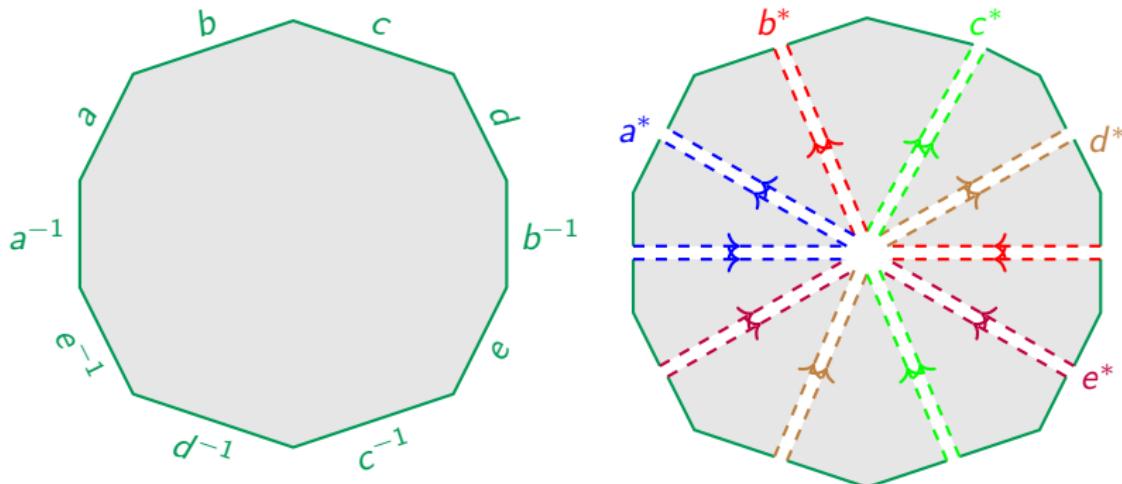
Work with the short exact sequence of groupoids :

$$\Gamma.V \rightarrow \pi_1(\mathfrak{h} - Y, \Gamma.V) \rightarrow \pi_1(\Gamma \setminus (\mathfrak{h} - Y), V) \rightarrow \Gamma(p) \rightarrow 1$$

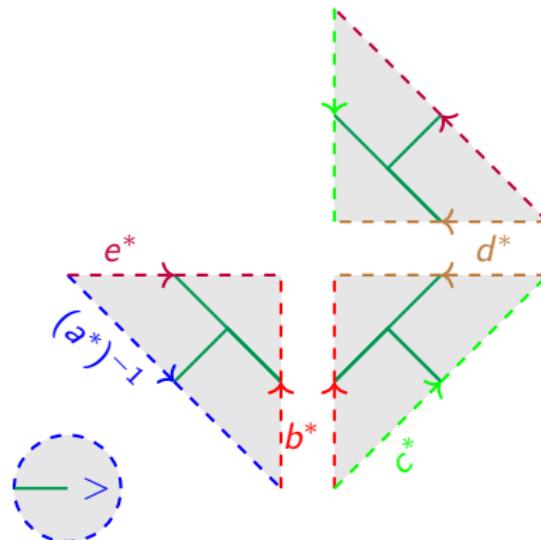
for a vertex set V . The map on the right will then exactly be generated by a side pairing of the form (σ_1, φ) .

Solving problem 2

Have a new set of polygons with centers vertices of G as follows, first cut along dashed lines



Then glue along σ_1 and call G^* the new quotient graph $(\sqcup_{i=1}^f P_i)/\sigma_1$:



Remark :

The gluing can be done using the Γ action but the polygons don't form a fundamental domain anymore.

Defining $\pi_1(\Gamma \setminus (\mathbb{H} - V(G)), V(G^*)) \rightarrow \Gamma$ **with** (σ_1^*, φ^*)

New side pairing :

For x in E , x^* and x are both mapped to $\varphi(x)$ through

$$\pi_1(\Gamma \setminus (\mathbb{H} - V(G)), V(G^*)) \rightarrow \Gamma$$

Indeed $\varphi(x)$ is determined by its action on $\{x(1/2), x^{-1}(1/2), v\}$ where v is the center of P .

This means that the new side pairing (σ_1^*, φ^*) is just (σ_1, φ) .

► Now see that polygons are represented by the words

$$a^*, e^*b^*(a^*)^{-1}, (b^*)^{-1}(d^*)^{-1}c^*, d^*(c^*)^{-1}(e^*)^{-1}$$

which are exactly the predicted by the main structure theorem.

Defining $\pi_1(\Gamma \setminus (\mathbb{H} - V(G)), V(G^*)) \rightarrow \Gamma$ **with** (σ_1^*, φ^*)

New side pairing :

For x in E , x^* and x are both mapped to $\varphi(x)$ through

$$\pi_1(\Gamma \setminus (\mathbb{H} - V(G)), V(G^*)) \rightarrow \Gamma$$

Indeed $\varphi(x)$ is determined by its action on $\{x(1/2), x^{-1}(1/2), v\}$ where v is the center of P .

This means that the new side pairing (σ_1^*, φ^*) is just (σ_1, φ) .

► Now see that polygons are represented by the words

$$a^*, e^*b^*(a^*)^{-1}, (b^*)^{-1}(d^*)^{-1}c^*, d^*(c^*)^{-1}(e^*)^{-1}$$

which are exactly the predicted by the main structure theorem.

Retrieving the basic presentation of Γ

Using (groupoid-theoretic) Van Kampen on the new cell decomposition of $\Gamma \setminus \mathfrak{h} - V(G)$, with $\{c_v\}_{v \in V(G)}$ being the cycles of $\sigma_1 \sigma_2^{-1}$ and γ_v being the counter clock-wise loops c_v^{-1} we get

$$\pi_1(\Gamma \setminus \mathfrak{h} - V(G), V(G^*)) = \langle E(G^*) | c_v \gamma_v = 1; v \rangle$$

Further $\pi_1(\mathfrak{h} - \Gamma \cdot V(G), \Gamma \cdot V(G^*))$ is generated for each $v \in V(G^*)$ by the images $g \cdot \gamma_v$ for a small loop γ_v around v for each $g \in \Gamma$. Each $g \cdot \gamma_v$ maps to $\gamma_v^{\nu_v}$. So that we get

$$\Gamma \simeq \langle E(G^*) | c_v^{\nu_v} = 1 \rangle$$

Retrieving the basic presentation of Γ

Using (groupoid-theoretic) Van Kampen on the new cell decomposition of $\Gamma \setminus \mathfrak{h} - V(G)$, with $\{c_v\}_{v \in V(G)}$ being the cycles of $\sigma_1 \sigma_2^{-1}$ and γ_v being the counter clock-wise loops c_v^{-1} we get

$$\pi_1(\Gamma \setminus \mathfrak{h} - V(G), V(G^*)) = \langle E(G^*) | c_v \gamma_v = 1; v \rangle$$

Further $\pi_1(\mathfrak{h} - \Gamma \cdot V(G), \Gamma \cdot V(G^*))$ is generated for each $v \in V(G^*)$ by the images $g \cdot \gamma_v$ for a small loop γ_v around v for each $g \in \Gamma$. Each $g \cdot \gamma_v$ maps to $\gamma_v^{v_v}$. So that we get

$$\Gamma \simeq \langle E(G^*) | c_v^{v_v} = 1 \rangle$$

Retrieving the basic presentation of Γ

Using (groupoid-theoretic) Van Kampen on the new cell decomposition of $\Gamma \setminus \mathfrak{h} - V(G)$, with $\{c_v\}_{v \in V(G)}$ being the cycles of $\sigma_1 \sigma_2^{-1}$ and γ_v being the counter clock-wise loops c_v^{-1} we get

$$\pi_1(\Gamma \setminus \mathfrak{h} - V(G), V(G^*)) = \langle E(G^*) | c_v \gamma_v = 1; v \rangle$$

Further $\pi_1(\mathfrak{h} - \Gamma \cdot V(G), \Gamma \cdot V(G^*))$ is generated for each $v \in V(G^*)$ by the images $g \cdot \gamma_v$ for a small loop γ_v around v for each $g \in \Gamma$. Each $g \cdot \gamma_v$ maps to $\gamma_v^{\nu_v}$. So that we get

$$\Gamma \simeq \langle E(G^*) | c_v^{\nu_v} = 1 \rangle$$

Improving the presentation

From the map $\mathfrak{h} - V(G) \rightarrow \mathfrak{h}$ there is a surjective morphism of groupoids

$$\pi_1(\Gamma \setminus (\mathfrak{h} - V(G)), V(G^*)) \rightarrow \pi_1(\Gamma \setminus \mathfrak{h}, V(G^*))$$

and studying its kernel shows that it is made of loops around vertices of $V(G)$.

Goal :

Use the one polygon presentation of the compact surface $\Gamma \setminus \mathfrak{h}$ to compute $\pi_1(\Gamma \setminus \mathfrak{h}, v)$ and pull it back.

To do so :

- ▶ Find a covering tree in the graph made of polygons (cycles of σ_2) and edges those x such that x and x^{-1} lie in different polygons.
- ▶ Glue the polygons along the tree \rightarrow get 1 polygon.
- ▶ Pull it back to $\pi_1(\Gamma \setminus (\mathfrak{h} - V(G)), V(G))$.

Improving the presentation

From the map $\mathfrak{h} - V(G) \rightarrow \mathfrak{h}$ there is a surjective morphism of groupoids

$$\pi_1(\Gamma \setminus (\mathfrak{h} - V(G)), V(G^*)) \rightarrow \pi_1(\Gamma \setminus \mathfrak{h}, V(G^*))$$

and studying its kernel shows that it is made of loops around vertices of $V(G)$.

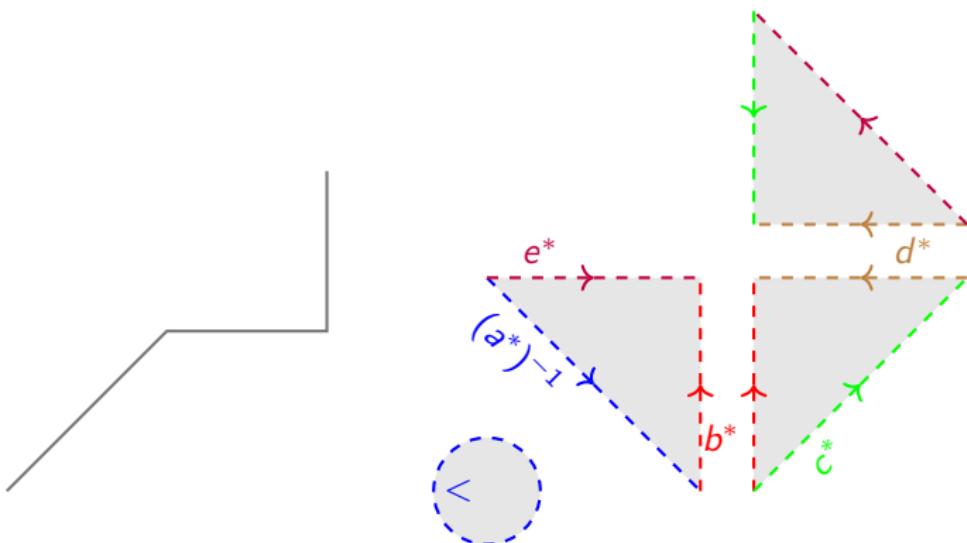
Goal :

Use the one polygon presentation of the compact surface $\Gamma \setminus \mathfrak{h}$ to compute $\pi_1(\Gamma \setminus \mathfrak{h}, v)$ and pull it back.

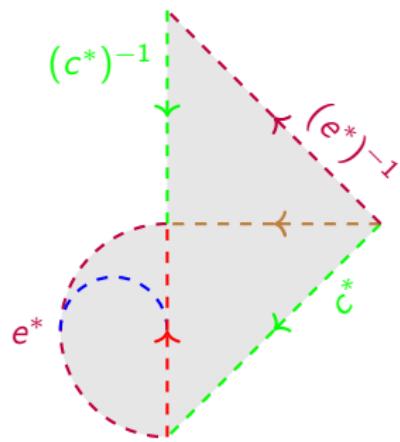
To do so :

- ▶ Find a covering tree in the graph made of polygons (cycles of σ_2) and edges those x such that x and x^{-1} lie in different polygons.
- ▶ Glue the polygons along the tree \rightarrow get 1 polygon.
- ▶ Pull it back to $\pi_1(\Gamma(\mathfrak{h} - V(G)), V(G))$.

In practice :

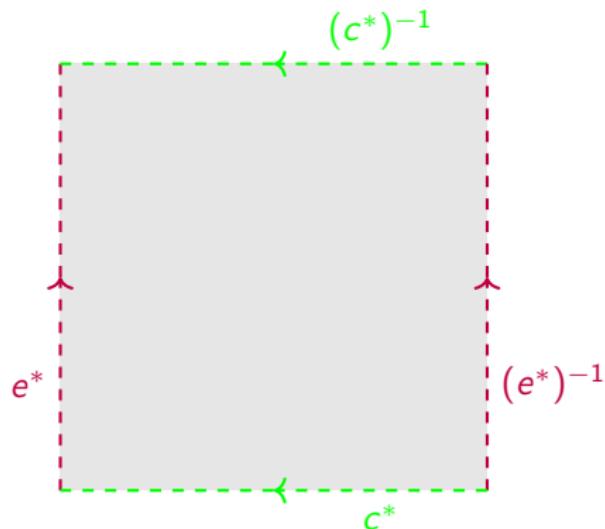


Post-gluing



Post-flattening

We see that $\Gamma \backslash \mathbb{H}$ is just a torus.



Call P' the new glued polygon and γ be the boundary loop $\partial P'$ in counter-clockwise orientation.

Recover a presentation for Γ

- ▶ γ lies in $\pi_1(\Gamma(\mathfrak{h} - V(G)), V(G^*))$ we can write it as a product
 $\gamma = \gamma_1 \gamma_2 e^* \gamma_3 \gamma_4 \bar{e}^*.$
- ▶ A last application of Van Kampen on $P' - V(G)$ shows that

$$\begin{aligned}\pi_1(\Gamma \setminus (\mathfrak{h} - V(G)), V(G^*)) &= \langle E(\Gamma \setminus P'), \gamma_1, \dots, \gamma_f \mid w\gamma = 1, \gamma_i^{\nu_i} = 1 \rangle \\ &= \langle e^*, c^*, \gamma_1, \gamma_2, \gamma_3, \gamma_4 \mid [e^*, c^*] \gamma_1 \gamma_2 e^* \gamma_3 \gamma_4 (e^*)^{-1} = 1 \rangle\end{aligned}$$

Quotienting by $\pi_1(\mathfrak{h} - \Gamma \cdot V(G), V(G^*))$ we get

$$\Gamma = \langle e^*, c^*, \gamma_1, \gamma_2, \gamma_3, \gamma_4 \mid [e^*, c^*] \gamma_1 \gamma_2 e^* \gamma_3 \gamma_4 (e^*)^{-1} = 1, (a^*)^3 = 1 \rangle$$

which is the one-word (even geometric) presentation.

Work in progress

For a covering $\Gamma_1 \backslash \mathbb{H} \rightarrow \Gamma_2 \backslash \mathbb{H}$ given as a permutation representation $\Gamma_1 \rightarrow S_n$. Compute one-word, m -handles and geometric presentations for Γ_2 from that of Γ_1 expected in $\tilde{O}(n)$ time. Permits increasing the level of $S_k(\eta)$.

Thanks!