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Disclaimer

The code demonstrated in this talk is not yet well-polished.

| would be happy to hear your suggestions / remarks!
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© Computations in Jacobians over finite fields
@ p-adic computations in Jacobians
© p-adic computation of mod ¢ Galois representations

@ p-adic computation of mod ¢ Galois representations
attached to modular forms
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Computations in Jacobians
over finite fields
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Curves and Jacobians

Let C be a curve of genus g € N.

The Jacobian J of C is an Abelian variety of dimension g.

Abelian: group law on J, similarly to elliptic curves.
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Curves and Jacobians

Let C be a curve of genus g € N.

The Jacobian J of C is an Abelian variety of dimension g.
Abelian: group law on J, similarly to elliptic curves.

However, typically the equations of J are really horrible!
~» We want to compute in J by just looking at C.

NB Jacobian of a curve = Picard group of the curve ~ class
group of a number field.

This is possible thanks to Makdisi's algorithms.
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Makdisi's algorithms

All we need is the matrix

vi(P1) wa(Py)
V= : :
vi(P,) wa(Py)

where vy, v, are “functions” on C forming a basis of the space

of global sections of a line bundle £ on C (=~ Riemann-Roch
space), and Py, P,,--- € C are sufficiently many points.
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Makdisi's algorithms

All we need is the matrix

vi(P1) wa(Py)
V= : :

vi(P,) wa(Py)

where vy, v, are “functions” on C forming a basis of the space

of global sections of a line bundle £ on C (=~ Riemann-Roch
space), and Py, P,,--- € C are sufficiently many points.

A point on J is then represented by a matrix
Wl(Pl) W2(P1)

W = : :
Wl(Pn) WQ(P,-,)

where wy, wy, - -+ is a basis of a subspace.



Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve
C:x* 42y +x*=3xy—2=0

over Fygs, and generate a random point on J.

J = smoothplanepicinit (x"4+2%y~4+x~3-3*x*y-2,29,3)
W = picrand(J)

picmember (J,W)

piciszero(J,W)

W2 = picrand(J);

piceq(J,W,W2)

picadd(J,W,W2)
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Example: Smooth quartic over a finite field

We construct the Jacobian J of the curve
C:x* 42y +x*=3xy—2=0

over Fygs, and generate a random point on J.

J = smoothplanepicinit (x"4+2%y~4+x~3-3*x*y-2,29,3)
W = picrand(J)

picmember (J,W)

piciszero(J,W)

W2 = picrand(J);

piceq(J,W,W2)

picadd(J,W,W2)

Hyperelliptic and superelliptic curves are also available.

We plan to implement general curves; the only missing
ingredient is Riemann-Roch spaces.
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Point counting and random torsion points

The zeta function of C/F,, is

L(x)"
2L/ ‘ex"<z#c ) T2 )

n>1

where L(x) = det(x — Frob, |,) € Z[x].

We have #J(F ;) = Res(L(x),x" — 1) € N for all n € N,

factor(piccard(J))

= picrandtors(J,13);
picmember (J,W)
piciszero(J,picmul (J,W,13))
piciszero(J,W)
picistorsion(J,W,13)
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Frobenius and pairings

If e C Fy, we have the Frey-Riick pairing

J(Fo)[0] x J(Fq)/LI(Fg) — Fy /¥ — /(L.

P = pictorspairinginit(J,13);

X = picrand(J);
pictorspairing(J,P,W,X)
pictorspairing(J,P,picmul(J,W,2),X)

~» We can analyse the action of Frobenius on J(F,)[13]:

FW = picfrob(J,W);
pictorspairing(J,P,FW,X)
piceq(J,picmul (J,W,9) ,picfrob(J,W))
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p-adic computations
in Jacobians
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Truncated p-adics

Instead of working over F, = F,[t]/T(t) = Z[t]/(T(t), p)
where T(t) is irreducible mod p, we can work over

Lq/p® = L[t]/(T (1), p°)
for any e € N.

J2 = picsetprec(J,21); \\ Now mod 297e, e=21
Y = picrand(J2)

picmul (J2,Y,-3)

picmember (J2,W)

picmemberval (J2,W)

picmemberval (J2,Y)
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Hensel-lifting torsion points

If pt{is a prime of good reduction of C, the reduction map
J(Zg)[l] —= J(Fq)[1]
is étale, so we can lift /-torsion points.

W2 = piclifttors(J2,W,13);

picmember (J2,W2)

picistorsion(J2,W2,13)

piciszero(J2,W2)
piceq(J2,picmul (J2,W2,9) ,picfrob(J2,W2))
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p-adic computation

of mod /¢

Galois representations
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Jacobians and Galois representations

Let C be a curve of genus g over Q, let J be its Jacobian, and
let £ € N.

Then J(Q)[/] ~ (Z/¢Z)?8, and the points of J[¢] are not

defined over Q in general
~ Galois representation

pue: Gal(Q/Q) — Aut(J[(]) ~ GSp,,(Z/(Z).
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Jacobians and Galois representations

Let C be a curve of genus g over Q, let J be its Jacobian, and
let £ € N.

Then J(Q)[/] ~ (Z/¢Z)?8, and the points of J[¢] are not
defined over Q in general
~ Galois representation

pue: Gal(Q/Q) — Aut(J[(]) ~ GSp,,(Z/(Z).

If p{¢is a prime of good reduction of C, then p,, is
unramified at p, and the characteristic polynomial of

pse(Frob,) is L(x) mod ¢, where Z(C/F,) = a _ﬁ(())z)lre: P
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Jacobians and Galois representations

Let C be a curve of genus g over Q, let J be its Jacobian, and
let £ € N.

Then J(Q)[/] ~ (Z/¢Z)?8, and the points of J[¢] are not
defined over Q in general
~ Galois representation

pue: Gal(Q/Q) — Aut(J[(]) ~ GSp,,(Z/(Z).

If p{¢is a prime of good reduction of C, then p,, is
unramified at p, and the characteristic polynomial of

pse(Frob,) is L(x) mod ¢, where Z(C/F,) = a _ﬁ(())z)lre: P

We wish to compute p, .
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p-adic strategy to compute p,

@ Choose prime p 1 ¢ of good reduction of C,
@ Find g = p? such that J[{] is defined over F,,

@ Generate random points of J(IF,)[¢] until we get
an [Fy-basis,

@ Lift this basis from J(F,) to J(Z,/p€), e > 1,

© Form all linear combinations of these points
in J(Zq/p°)IF],

O F(x) = TIlicspq (x = 0(t)), where 6 : J —» AL,

@ Identify F(x) € Q[x].



Example: 2-torsion of the Klein quartic

Let C: x3y +y>+ x = 0. We compute p, .

X" 3xy+y~3+x;

[1,0,0]; \\ Points on C

[0,1,0]; \\ Needed to construct J -> Al
= 2; \\ Look at J[2]

5; e = 60; \\ Work mod 5760
smoothplanegalrep(f,1,p,e, [[P],[Q]])

fa = factor(R[1])

Mat (apply(polredabs,fal,1]))

=~ s o BN liS o i v B
|

We see that the field of definition of J[2] is Q((7).
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Sub-representations of p, ¢

Frequently, we only want the representation p7 coming from
the points of a Galois-stable Fy-subspace T C J[/].

Given p € N prime, let
L(x) = det(x — Frob, |;q) and x7(x) = det(x — Frob,|7),
so that x 7 | L.

If x7 is coprime with )7 = L/x 1, then we can generate
random points of T by applying ¢ 1(Frob,) to random points
of J[{]

~» We can compute pr.
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Example: A piece of hyperelliptic 7-torsion

h
f=
P

x"3+x+1; \\ C : y " 2+h(x)*y = £(x)
x"5+x74; \\ Good reduction away from 13
[-1,0]; \\ Points on C

Q= [0,0]; \\ Needed to construct J —-> A1l

= 17; e = 30; \\ Work mod 17730

7; \\ Look at piece of J[7]

chi = x"2-x-2; \\ Where Frobl7 acts like this
R = hyperellgalrep([f,h],1,p,e, [P,Q],chi)
PR = projgalrep(R);

F = polredabs(PR[1])

polgalois(F)

factor(nfdisc(F))

[alia o]

We obtain a polynomial with Galois group PGL,(IF;) which
ramifies only at 7 and at 13.
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p-adic computation

of mod /¢

Galois representations

attached to
modular forms

Nicolas Mascot p-adic computation of Galois represe

ntations



Galois representations attached to modular forms

+00
Let f = q+ Zanq” S Sk(rl(N),g), k > 2, be a newform

n=2
with coefficient field Kr = Q(a,, n > 2).

Pick a prime [ of K¢ above some ¢ € N.
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Galois representations attached to modular forms

+00

Let f =g+ Zanq” € Sk(l'l(N),g), k > 2, be a newform
n=2

with coefficient field Kr = Q(a,, n > 2).

Pick a prime [ of K¢ above some ¢ € N.

Theorem (Deligne, Serre)

There exists a Galois representation

pry: Gal(@/Q) — GL(FY),

which is unramified outside /N, and such that the image of
any Frobenius element at p t /N has characteristic polynomial

x* — apx +e(p)p* € Fi[x].
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Galois representations attached to modular forms

+00

Let f =g+ Zanq” € Sk(l'l(N),g), k > 2, be a newform
n=2

with coefficient field Kr = Q(a,, n > 2).

Pick a prime [ of K¢ above some ¢ € N.

Theorem (Deligne, Serre)

There exists a Galois representation

pry: Gal(@/Q) — GL(FY),

which is unramified outside /N, and such that the image of
any Frobenius element at p t /N has characteristic polynomial

x* — apx +e(p)p*t € Fifx].

We wish to compute pr .
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Modular Galois representations in Jacobians

Under reasonable hypotheses, pf is afforded by a Galois-stable
piece T C J[{], where J is the Jacobian of the modular

curve Xi(N'),
, | N ifk=2,
V= { IN if k> 2.
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Modular curves

Curves Points

Pairs (E, a)
X(N) where « : (Z/NZ)? ~ E[N]
and ey(a(1,0),(0,1)) = (n
Pairs (E, P)

X1(N) where P € E
has exact order N

Elliptic curves E

where (p is a fixed primitive N-th root of 1.
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Makdisi for X (N)

Need line bundle L:
Pick £ whose sections are modular forms of weight 2.

Need points Py, - -, P, to evaluate forms at:
Fix (E, a), take the
(E,cr07)

for v € SLo(Z/NZ)/ £ 1.

Still need to “evaluate” a basis of the space of forms of
weight 2 at the P;...
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Algebraic modular forms

Let Kk € N, and R a commutative ring such that 6N € R*.
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Algebraic modular forms

Let kK € N, and R a commutative ring such that 6N € R*.

Definition

An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to isomorphism classes of triples
(E/R, a,w) where w generates the differential forms on E/R
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Algebraic modular forms

Let kK € N, and R a commutative ring such that 6N € R*.

Definition

An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to isomorphism classes of triples
(E/R, a,w) where w generates the differential forms on E/R,
and such that

f(E,a, uw) = u*f(E, a,w)

for all u € R*. )

Nicolas Mascot p-adic computation of Galois representations



Algebraic modular forms

Definition
An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to triples (E/R, a,w), such that

f(E,a,uw) = u*f(E, o, w)

for all u € R*. )
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Algebraic modular forms

Definition
An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to triples (E/R, a,w), such that

f(E,a,uw) = u*f(E, o, w)

for all u € R*.

Short Weierstrass
(&) : y¥*=x*+Ax+B
~ w = dx/2y.
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Algebraic modular forms

Definition
An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to triples (E/R, a,w), such that

f(E,a,uw) = u*f(E, o, w)

for all u € R*.

Short Weierstrass
(&) : y*=x>+Ax+B
~ w = dx/2y.
Isomorphic to
(&) : Y =x+Ax+ B
by (x,y) — (u°x, u3y), A = u*A, B' = u°B, o' = v w.
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Algebraic modular forms

Definition
An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to pairs (£/R, «), such that

f(E, a) = u f(E,a)

for all u € R*.

Short Weierstrass
(&) : y*=x>+Ax+B
~ w = dx/2y.
Isomorphic to
(&) : Y =x+Ax+ B
by (x,y) — (u°x, u3y), A = u*A, B' = u°B, o' = v w.
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Algebraic modular forms

Definition
An algebraic modular form of weight k for X(N) over R is a
rule f assigning a value to pairs (£/R, «), such that

f(&, a) = u f(E,a)

for all u € R*.

E — Ais a modular form of weight 4.

Er A= —64A% — 432B2 is a modular form of weight 12.

by (x,y) — (v°x, u3y), A = u*A, B' = u®B, ' = v 1w.

Nicolas Mascot p-adic computation of Galois representations



Makdisi's moduli-friendly forms

a: (Z/NZ)? ~ E[N]
For v,w € (Z/NZ)? such that v, w, v + w are all nonzero, let

Avw © (€, ) — slope of line joining a(v) to a(w).
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Makdisi's moduli-friendly forms

a: (Z/NZ)? ~ E[N]
For v,w € (Z/NZ)? such that v, w, v + w are all nonzero, let

Avw © (€, ) — slope of line joining a(v) to a(w).

Theorem (Makdisi, 2011)

Q@ )\, is a modular form of weight 1 for X(N).
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Makdisi's moduli-friendly forms

a: (Z/NZ)? ~ E[N]
For v,w € (Z/NZ)? such that v, w, v + w are all nonzero, let

Avw © (€, ) — slope of line joining a(v) to a(w).

Theorem (Makdisi, 2011)

Q@ )\, is a modular form of weight 1 for X(N).

@ The R-algebra generated by the A\, ,, contains all modular
forms for X(N), except cuspforms of weight 1.
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Makdisi's moduli-friendly forms

a: (Z/NZ)? ~ E[N]
For v,w € (Z/NZ)? such that v, w, v + w are all nonzero, let

Avw © (€, ) — slope of line joining a(v) to a(w).

Theorem (Makdisi, 2011)

Q@ )\, is a modular form of weight 1 for X(N).

@ The R-algebra generated by the A\, ,, contains all modular
forms for X(N), except cuspforms of weight 1.

© The A\, are moduli-friendly!
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Makdisi's moduli-friendly forms

a: (Z/NZ)? ~ E[N]
For v,w € (Z/NZ)? such that v, w, v + w are all nonzero, let

Avw © (€, ) — slope of line joining a(v) to a(w).

Theorem (Makdisi, 2011)

Q@ )\, is a modular form of weight 1 for X(N).

@ The R-algebra generated by the A\, ,, contains all modular
forms for X(N), except cuspforms of weight 1.

© The A\, are moduli-friendly!

~» We can compute in the Jacobian of X(N) without
equations nor g-expansions, just by looking at E[N] for one &!
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Example 1

Let
f=q+ (=i —1)¢ + (i — 1)¢’ + 0(¢*) € S(I1(16))
and

[=(5,i—2).

We catch pr in the 5-torsion of the Jacobian of X;(16)
(genus 2).

mfinit([16,2,0],1);
mfeigenbasis(S[1]1) [1];
mfgalrep(f, [5,[[2,2]]1], [30,50],5)
actor(projgalrep(R) [1])

S
f
R
f
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Example 2

Let
f=A=q—24¢°+252¢° + O(q4) € 512<r1(1))

and
[ =17.

We catch pf in the 17-torsion of the Jacobian of X;(17)

(genus b).
f = mfDelta();
R = mfgalrep(f,17,100,200)

F = polredbest(projgalrep(R) [1])
factor(nfdisc(F))
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