Karim Belabas on Fri, 12 Aug 2016 14:03:29 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
pari-2.8.0 released ! |
Dear PARI lovers, I would like to announce the release of long-awaited pari-2.8.0-ALPHA, incorporating two years worth of development into an official release! The sources and binaries for Windows or MacOS can be obtained through the address http://pari.math.u-bordeaux.fr/download.html This new branch contains three brand new packages (L-functions, Modular Symbols and Central Simple Algebras) as well as a wealth of new functions for elliptic curves, and many improvements throughout the system. A new set of reference cards was prepared for an overview of 2.8.* GP functions, see http://pari.math.u-bordeaux.fr/doc.html#refcard See http://pari.math.u-bordeaux.fr/Bugs/ for how to report problems or submit wishlist items. Have fun ! K.B. HIGHLIGHTS FOR PARI-2.8.0-ALPHA: see below for COMPATIBILITY ISSUES. ================================ [Systems] - Mingw64 support (Windows 64 bit) - Unify 32/64 bit random generators. Probabilistic algorithms should now behave identically on all architecture, provided they do not involve the floating point kernel [The GP language] - Support for variadic GP functions (having any number of arguments), e.g. ? f(v[..]) = sum(i = 1, #v, v[i]) ? f(1, 2, 3, 4, 5) %2 = 15 - New constant "oo" (for +/- infinity) - Simpler handling of polynomial variables: polynomial variables no longer spring into existence whenever a new identifier occurs in the parser, only if a polynomial is explicitly created; e.g. t = 0 no longer creates the "polynomial variable" t thereby messing up variable ordering. Functions varhigher() and varlower() allow to define variables of arbitrary priority independently of the session history; variables() returns the list of variables occuring in an object: ? variable(x + y*z / t) %1 = x ? variables(x + y*z / t) %2 = [x, y, z, t] - Hashtables/dictionaries in GP via functions Map, mapget, mapput, mapisdefined, mapdelete ? M = Map(); \\ empty dictionary ? mapput(M, "a", 23); \\ insert key/value: "a" maps to 23 ? mapput(M, "b", 43); \\ "b" maps to 43 ? mapget(M, "a") \\ retrieve value attached to key "a" %3 = 23 ? M = Map(["a", 23; "b", 43]); \\ fast initialization - New functions allow setting precision at the bit-level (instead of the word-level = 64 bits); new default 'realbitprecision' and \pb shortcut, and a function bitprecision() - Warn when coercing quotient rings when 'debug' is non-zero ? \g1 ? Mod(1,2)+Mod(1,3) *** _+_: Warning: coercing quotient rings; moduli 2 and 3 -> 1. - More versatile closures: function self() for recursive anonymous functions, call() to apply a function of unspecified arity to arbitrary arguments), fold() such that fold(f,v) = f(...(f(v[1], v[2]), ...,) v[#v]) - Miscellaneous new GP functions: serprec, powers, parforvec [Multiprecision Kernel] - incgam, incgamc, eint1 more reliable - new functions sinc(x) = sin(x) / x and cotanh = 1/tanh - improved p-adic log at high accuracy - improved gamma, lngamma and psi at power series arguments [Numerical sumation and integration] - rewrote numerical integration routines, which can of course directly use the new oo symbol: ? intnum(t = -oo, oo, 1/(1+t^2)) - Pi %1 = 0.E-37 - Gauss-Legendre quadrature: intnumgauss() - Rewrote numerical sumation (replace Abel-Plana by Euler-Mac Laurin). This changed the sumnum() interface ! - Monien summation: sumnummonien() - Numerical extrapolation: limitnum(), asympnum() ? limitnum(n -> (1+1/n)^n) - exp(1) %1 = 0.E-37 ? asympnum(n -> n! / (sqrt(2*Pi) * n^(n+1/2) * exp(-n))) %2 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880, 5246819/75246796800, -534703531/902961561600] - Continued fractions for numerical approximation via Pade approximants: contfracinit() and contfraceval() - Inverse Mellin transforms of Gamma products: gammamellininv() - Multiple Zeta Values: zetamult() ? zetamult([2,1]) - zeta(3) \\ Euler's identity %1 = 0.E-38 - zeta(odd integer): use Borwein's "sumalt" algorithm (10 times faster than previous at \p1000) [Elementary Number Theory] - Bounded factorization factor(n,lim) now always respects the 'lim' argument (was ignored when n fit into a long integer) - sumdigits() now allows to specify the base; new function fromdigits() - Allow ffgen([p,f]) in addition to ffgen(p^f) and ffgen(T*Mod(1,p)) - New functions for generic characters: charker, charorder, charconj, charmul, chardiv, chareval - New functions for Dirichlet characters: znconreychar, znconreyexp, znconreylog, znconreyconductor, zncharinduce, zncharisodd. See ??Dirichlet The functions idealstar / ideallog now allow omitting 'nf' argument for nf = Q allowing to handle efficiently Dirichlet characters as Hecke characters. - Miscellaneous new functions: qfbredsl2(), ispseudoprimepower(), ramanujantau() [Polynomials] - Real root finder: new function polrootsreal(T, [a,b]) - factorcantor now uses Shoup-Kaltofen algorithm (much faster) - padicfields(p, d) much faster for huge prime p [Linear Algebra] - faster matrix multiplication over Z (Strassen) and finite fields (better handling of modular kernel) - matsolve(a,b) and a^(-1) could give wrong results [or SEGV] when t_MAT 'a' was non-square - faster implementation of matfrobenius/minpoly - matkerint: replace underlying LLL algorithm by mathnf Simple bench: M=matrix(50,55,i,j,random(10^5)); \\ 200 times faster [Elliptic curves] - Twists and Isogenies: elltwist, ellisogeny, ellisogenyapply, ellxn. - Modular polynomial attached to various class invariants: polmodular(); attached class polynomials defining Hilbert class fields: polclass(). - Formal groups: ellformalw, ellformalpoint, ellformaldifferential, ellformallog, ellformalexp - Elliptic curves over finite fields: ellissupersingular(), fast ellcard() over fields of small, medium or large characteristic (SEA, Kedlaya, Satoh), ellsea() for ellcard with early abort (almost prime cardinality); elltatepairing() now reliable for self-pairings - Elliptic curves over Q: ellrootno(e, 2 or 3) for non-minimal e is now properly supported; more robust and much faster ellL1() and ellanalyticrank() (the condition ord(L_E,s=1) <= r in ellL1(E,r) is no longer necessary; r is now optional, 0 by default); p-adic heights: ellpadics2, ellpadicheight, ellpadicheightmatrix; p-adic L function: ellpadicL (see also mspadicL); Q-isogenous curves and matrix of isogeny degrees: ellisomat; minimal quadratic twist: ellminimaltwist; smallest multiple having good reduction everywhere: ellnonsingularmultiple; new optional flag to forell to loop over isogeny classes. - Elliptic curves over number fields: ellinit([a1,...,a5], nf); support elltors, ellorder, elisdivisible, elllocalred, ellminimalmodel, ellan, ellap(E,P), ellcard(E,P) for P a maximal ideal - Elliptic curves over p-adic fields: Q_2 is now properly supported, ellpointtoz(E / Qp) has been fixed, added Mazur-Tate-Teitelbaum's L invariant to E.tate; new function ellpadiclog. [Other Curves of small genus] - Rational points on conics/Q : qfsolve, qfparam [ adapted from Denis Simon's qfsolve.gp ] - General cubic/binary quartic to Weierstrass model: ellfromeqn() - genus2red: allow rational non integral models + change input so that either genus2red(P) for y^2 = P and genus2red([P,Q]) for y^2 + x*Q = P are recognized; the output is now normalized + many bug fixes. - new functions ellpadicfrobenius, hyperellpadicfrobenius, hyperellcharpoly [Modular symbols & p-adic L functions] New package; see ??8 - Modular symbols for Gamma_0(N): msatkinlehner msfromell mshecke mspathlog mscuspidal msfromhecke msinit msqexpansion mseisenstein msgetlevel msissymbol mssplit mseval msgetsign msnew msstar msfromcusp msgetweight mspathgens - Attached overconvergent symbols, p-adic distributions and L-functions: mstooms, msomseval, mspadicL, mspadicinit, mspadicmoments, mspadicseries [Complex L-functions] New package; see ??6 and ??Ldata lfun lfundiv lfunmfspec lfunabelianrelinit lfunetaquo lfunmul lfuntheta lfunan lfunhardy lfunorderzero lfunthetainit lfuncheckfeq lfuninit lfunqf lfunzeros lfunconductor lfunlambda lfunrootres lfunartin lfuncreate [Associative and central simple algebras] New package, see the tutorial ! algabsdim algdisc algisramified algrandom algadd algdivl algissemisimple algrelmultable algalgtobasis algdivr algissimple algsimpledec algaut alghasse algissplit algsplittingdata algb alghassef algleftmultable algsplittingfield algbasis alghassei algmul algsplittingmatrix algbasistoalg algindex algmultable algsqr algcenter alginit algneg algsub algcentralproj alginv algnorm algsubalg algchar alginvbasis algpoleval algtableinit algcharpoly algisassociative algpow algtensor algdecomposition algiscommutative algprimesubalg algtrace algdegree algisdivision algquotient algtype algdim algisdivl algradical algisinv algramifiedplaces [Number Fields] - New "compositum" functions. nfcompositum(): over number fields; new binary flag to polcompositum() to assume fields are linearly disjoint; nfsplitting: equation for splitting field / Q - Class groups and units: use GRH-guaranteed bounds in bnfinit for residue estimate; made qfbclassno more reliable: correct for |D| < 2.10^10 and no known counter example; of course you can double check with quadclassunit() (rigorous under GRH but much slower up to |D| ~ 10^18 or so) - Class field theory: bnrisgalois, bnrgaloismatrix, bnrgaloisapply; faster and more reliable rnfkummer; bnrconductor(bnr, chi) as a shortcut for bnrconductor(bnr, Ker chi), same for bnrisconductor, bnrdisc and bnrclassno; bnrchar to define classes of Hecke characters, e.g. trivial on some congruence subgroup. - Relative number fields: rnf structures may now contain a full absolute nf struct, attached to rnf.polabs; nfinit(rnf) returns it. This allows rnf functions to return objects in standard notation (e.g. ideals in HNF instead of as a vector of t_POLMOD generators); add optional flag to that effect in rnfeltabstorel, rnfeltdown, rnfeltup, rnfidealreltoabs, rnfinit. New functions rnfidealprimedec, rnfidealfactor. Add optional flag to nfhnf and nfsnf to return transformation matrices. - idealprimedec now allows an optional 3rd argument, to limit f(P/p) - Extend idealchinese() to impose sign conditions at specified real places - Improvements in thue(), whose solutions are now canonically ordered (lexsort); support (powers of) imaginary quadratic equations. COMPATIBILITY ISSUES BETWEEN 2.7.* and 2.8.* ============================================ - [libpari] function names obsoleted during the 2.3.* cycle (deprecated before 2007) have been commented out. See PARI_OLD_NAMES. - t_STR used to compare as larger than any real number via < or > operators. Such a comparison now raises an exception. - valuation(0,p), nfeltval(nf,0,pr), idealval(nf,0) precision(0), padicprec(0,p) now all return +oo infinite slopes of newtonpoly replaced by +oo (instead of 2^63-1) poldegree(0) now returns -oo - default 'compatible' and 'strictmatch' have been obsoleted. They are now no-ops. - GP: polynomial variable 'y' is now always defined on startup, with priority lower than 'x'; variables of arbitrary priority can now be created: 'x' is no longer guaranteed to have maximal priority, nor MAXVARN to have minimal priority. - the meaning of precision(x, n) no longer depends on the type of x: it now always refers to floating point precision. Before the change: precision([O(2),O(3),O(x)], 10) -> [O(2^10),O(3^10),O(x^10)] - no longer print a 0 t_POLMOD as "0", e.g. output explicitly Mod(0,x) instead of '0'. - content([]) -> 0 [ was 1 ] - polsturm(T, a, b) is still supported but deprecated, use polsturm(T, [a,b]) - nfdisc() and nfbasis() no longer support the old (T,flag,factorization) arguments. Use the generic [T,listP] syntax - ellbil(E,P,Q) is now deprecated, use ellheight(E,P,Q) - rnfconductor now returns [cond, bnr, H] instead of [cond, bnr.clgp, H] - The sumnum interface has changed, see ??sumnum - The broken implementation of Dedekind zeta function zetakinit / zetak has been removed, use the new Lfun package ! E.g. \\ ~ zetakinit(x^3-2) on the critical line up to height 100 ? L = lfuninit(x^3 - 2, [100]); \\ ~ zetak ? lfun(L, 1/2 + 10*I) \\ value at this point - polredabs(T) now internally uses the polredabs([T,listP]) strategy, making it much faster in favourable cases, while still always returning a canonical defining polynomial; polredabs([T,listP]) no longer returns 0 if the attached order cannot be proven to be maximal: it computes the expected canonical polynomial in all cases, which can be slow. Always use polredbest() if you do not require a canonical output. ------------------------------------------------------------------------------- P.S. The Changelog Bug numbers refer to the BTS at http://pari.math.u-bordeaux.fr/Bugs/ Done for version 2.8.0 (released 12/08/2016): Fixed 1- make install fails on OS/X: ln -s libpari.dylib libpari.dylib fails 2- Q_pvalrem(t_FRAC) => wrong result 3- [] == 0 but []~ != 0 (now []~ == 0 as well) [#1560] BA 4- test-kernel did not work when using --mt=pthread BA 5- ellheegner was using too much memory in some case 6- ellap can overflow on 32-bit machine [#1558] ellap(ellinit([582304190,64196421]),2147438927) -> overflow ellap(ellinit([-1137195,489565862]),2038074751) -> wrong result 7- nfhilbert(K,x,y, P above 2) could give wrong results [#1561] 8- rnfkummer sometimes failed to return an answer: error or oo loop. Relied on exhaustive enumeration of an Fp-vector space, some of whose elements would trigger an error. Replace by Fp-linear algebra that directly picks the correct line (O(d^3) algo instead of O(p^d), and no failures). Only compute the defining poly for the right element. XR 9- padicfields(huge p, d) was very slow [even though ramification is tame] 10- gcd(1/2, 1+I*1.) -> SEGV [#1563], 2.5.5 returned the wrong answer 1/2 11- mathnf(t_VEC) could corrupt input (change sign) 12- [libpari] RgM_transmul did not work 13- [libpari] Fq_issquare didn't support T=NULL 14- [libpari] nfpow_u didn't handle non-integral rational numbers 15- eint1(0) -> stack overflow [#1568] 16- liftint(List([0])) -> gerepile bug 17- factorint(n,flag): flag was ignored when n fit into a long 18- factor(n,lim): lim was ignored when n fit into a long 19- nfrootsQ(t_POL with leading coeff -1) could miss some solutions, e.g. nfroots(,-y^2-24476*y+119814917) -> [] instead of [-28657,4181] 20- precprime(1) -> invalid t_INT [#1576] 21- gaffsg(0, t_PADIC): wrong valuation 22- thue(f^e*g, ...), e even, (f,g)=1 missed solutions such that f<0 23- faster znlog when p-1 has only smallish prime factors. 24- (t_INTMOD with word-sized modulus)^(huge negative power) wrong [#1584] 25- (gp -p N) or (primelimit=N in gprc_ for N >= 436273290 resulted in an incorrect primetable. N.B. Such commands are now useless: needed primes are produced dynamically anyway. 26- monomial(exact zero, d, v) returned an invalid t_POL / t_RFRAC 27- contfracpnqn(v, n) returned partial quotients p[-1]/q[-1] ... p[n-1]/q[n-1], instead of the documented p[0]/q[0] ... p[n]/q[n] [#1580] 28- isprime(N, 0) was often slower than either of isprime(N, 1 or 2) 29- factor((3+4*I)/25) -> factor 2+I had 0 exponent [#1586] 30- made qfbclassno more reliable (fixes all counter examples in [#1411]) BA 31- iferr() could crash if some component of the t_ERROR were clones. 32- nffactor() could overflow the stack when default accuracy too low: e.g. nffactor(y^2-22, x^2+926246528884912528275985458927067632*y-4344481316563541186659879867597013188) 33- some elliptic curve functions accepted (elladd, ellmul) a Weierstrass 5-uple [a1,a2,a3,a4,a6] instead of an ell structure. No longer. Now only ellinit and ellchangecurve allow this syntax. 34- incorrect rounding in mulrr/divrr for one-word precision reals. BA 35- multiif did not handle correctly return() in conditions [#1590] 36- [0..5] -> [0,0,0,0,0] on some architectures 37- is_gener_Fp could return wrong results 38- Fq_sqrtn(t_INT,..,&zeta) could return a wrong root of 1 39- bnfinit: SEGV due to precision issues [#1592] 40- zm_zc_mul only worked for square zm matrices 41- genus2red(0,27*x^5+97*x^4+118*x^3+60*x^2+13*x+1,3) -> bug msg [#1596] 42- [gphelp] oo loop when $COLUMNS too small [#1594] 43- genus2red(x,-x^6-3*x^4-10*x^2-1,3) -> impossible inverse [#1597] 44- factoru(1) returned a t_MAT instead of the expected "matsmall" [#1598] 45- FpM_charpoly wrong in small characteristic [#1602] 46- Ser(Mod(0,2)) => incorrect object [#1587] 47- Ser(Mod(1,2)*x^2,,4) => incorrect precision [#1587] 48- Ser(x,v,prec < 0) => crash [#1587] 49- The t_SER Mod(0,2) + O(x^n) was not handled properly [precision and valuation would change unexpectedly] [#1587] 50- when compatible = 3; series() used a random precision 51- genus2red(0,6*x^6+5*x^4+x^2+1,7) -> impossible inverse [#1597] 52- isprime(2030967737887612953751815611955778057721609672149695775998900201419048774375002716065557720510887824952942799737911826638068045234238082640629966597954851668852106621828704531597859470496362810381251800973022824003330423370127762722630493369197869948901862977534730314352222720177713223750671181797) -> SEGV [#1604] 53- genus2red(x^3+1,1) -> type error [#1597] 54- gphelp did not handle === correctly [#1603] XR 55- bnrL1(bnrinit(bnfinit(x^2-168),[6,[1,1]],1)) -> bug in ArtinNumber[#1601] 56- FpXY_evaly() wrong when evaluating at 0 BA 57- [win32] gp could crash at start up [#1607] 58- nfisincl(t_POL, t_POL) could lead to wrong negative results 59- polresultant(1+x*z^2,1+y*z^4,z) -> GC error [#1614] BA 60- ellcard over non-prime fields of large char could return wrong results 61- [libpari] FpX_roots could produce GC errors [#1618] 62- weber(1+I) was missing its imaginary part 63- (1+I)*(1+1/2*I) => wrong result (type errors) [#1619] 64- contfracpnqn([a]) => [1,a;0,1] instead of [a,1;1,0] 65- primes([2^50, 2^50+200000]) => stack overflow 66- issquare((x+1/2)^2,&z); z => 1.0*x+0.5 instead of x+1/2 67- possibly wrong result in nfsnf 68- possibly missing roots in nfroots (when using Trager) 69- quadray(bnf, ideal) did not work 70- thue(-14*x^3 + 10*x^2 + 63*x - 5,1) -> "short continued fraction" [#1629] 71- thue(29*x^3+130*x^2-35*x-48,1) -> "round error" bug 72- T=thueinit(10*x^3+6*x^2-41*x+8,1); thue(T,8) => SEGV [#1630] 73- ellrootno(e,p = 2 or 3) when e not minimal at p => random result 74- catastrophic cancellation in ellheight (at oo) [#1637] 75- bnfnewprec could return a corrupt bnf structure: K=bnfinit(x^3-15667*x^2-88630960*x-1836105977032,1); bnfisprincipal(K,[29,14,15;0,1,0;0,0,1],3) -> oo loop 76- agm(1,2+O(5)) -> SEGV [#1645] BA 77- [cygwin64] ellap(ellinit([0,0,1,-1,0]),10007) broken 78- primes([-5,5]) -> [5] (spurious absolute values) 79- matqr([;]) -> crash 80- Fp_rem_mBarrett could return a non-normalized result p=436^56-35;Mod(271,p)^((p-1)/2) -> p+1 81- plotcopy would corrupt "string" objects (ROt_ST) BA 82- [GP] default arguments to GP functions could cause corruption [#1658] VBr83- [darwin] remove obsolete linker options that cause crashes [#1623] 84- divisors([2,1]) -> SEGV [#1664] 85- acos([Pol(1)]) -> GC bug [#1663] 86- matsolve(a,b) and a^(-1) gave wrong results [or SEGV] when t_MAT a was not square and a,b "modular" (F2m,Flm,FpM,FqM,F2xqM,FlxqM) same for x^(-1) [#1666] 87- primes([1,Pol(2)]) -> SEGV [#1668] 88- znlog(0,Mod(1,4),1) -> 0 (instead of []) 89- polzagier / sumalt(,1) / sumpos(,1) were slow and used too much memory 90- sumpos was wasting time when pre-computing \sum 2^e a(k*2^e) [ only needed for k odd, but was also done for k = 0 mod 4 ] + improve accuracy 91- intnum(x=[0,-1/2],[oo,-3/2],1/(sqrt(x)+x^(3/2))) -> junk t_COMPLEX (more generally: one endpoint has an algebraic singularity and the other is +-oo, non-oscillatory 92- intnum(x = [-oo,-3/2], [oo,-5/2], f(x)) --> loss of accuracy due to confusion between endpoint behaviours a/b in intnuminit data E.g. f(x)=(x<0,1/(1+(-x)^(3/2)), 1/(1+x^(5/2))); 93- intnum(x = [-oo,-3/2], [oo,-5/2], f(x)) --> loss of accuracy due to confusion between endpoint behaviours a/b in intnuminit data E.g. f(x)=(x<0,1/(1+(-x)^(3/2)), 1/(1+x^(5/2))); 94- intnum(x=[0,-1/2],[1,-1/3], x^(-1/2) + (1-x)^(-1/3)) -> error [didn't suport singularities at both endpoints] 95- buffer overflow after default(format,"f.precision") (whenever many initial zeroes) 96- qfminim(A, 0, ...) -> stack overflow [#1682] 97- e=ellinit("11a1"); ellztopoint(e,3*e.omega[1]/5) -> [5, junk] (instead of expected [5,5]) [#1683] 98- bnfinit(quadhilbert(-2180)) -> precision error [#1688] 99- div_scal_rfrac could create an invalid t_POL [#1651] 100- polroots(t_POL with leading coeff = 0) -> fp exception or error [#1690] 101- \r cannot deal with very long filenames [#1616] 102- rnfisabelian(nf, non monic t_POL) -> SEGV [#1693] 103- Vecrev(x,n) / Colrev(x,n) when 'n' is not omitted: it wasn't true that Colrev/Polrev were inverse functions [#1698] 104- possibly incorrect result in nfdisc(T,listP) even though listP included all prime divisors of the field discriminant. Example: p=10^100+267; q=10^120+79; T=polcompositum(x^2-p,x^2-q,2); nfdisc([T,[2,p,q]]) 105- wrong dim(Ker) returned by ZM_pivot => SEGV in Z-linear algebra routines. E.g. setrand(1);quadclassunit(-612556842419) [#1700] 106- moebius(factor(18)) -> 1 instead of 0 [#1702] 107- ispower(-167^10) => domain error [#1703] 108- ispowerful(factor(0)) != ispowerful(0) 109- expm1(2*I) => wrong result 110- gamma(1+a*x+O(x^2)) => error [#1707] 111- printsep() printed its argument in random format, instead of f_RAW as print() [#1708] 112- nfdisc(x^10 - 29080*x^5 - 25772600) -> oo loop [#1710] 113- forprime engine could skip (fast) sieve in favour of (slow) nextprime [#1711] 114- 0^[1] -> domain error [#1713] 115- memory leaks (clones) in ellchangecurve [#1716] 116- zeta inaccurate around 0 [ from 2.7 ], [#1714] 117- ellj(simple t_SER in 'x) much slower than in other variable [#1720] 118- bnrrootnumber did not support the trivial character in the form [0,..,0] 119- default(log,1) when logfile is write-protected later lead to SEGV [#1730] BA120- 2-adic gamma function: fix accuracy loss 121- A==A -> 0 for A a t_SER of huge accuracy (so that A-A overflows valuation) [#1734] XR122- P=[1,-2,12,-12,-181,-4,-6899,9780,6360,702,-45]; setrand(3); nfdisc(P) -> wrong answer [ crash if setrand(138) ] [#1735] 123- select(x->x,Vecsmall([1,2,3]),1) -> crash [#1737] 124- (1./x+O(1))-(1./x+O(1)) -> 0.E-38*x^-2+O(x^-1) [#1741] BA125- [libpari] RgV_to_RgX_reverse did not work if v[1] or v[2] was 0 126- bnfinit(x^3-87156*x^2-6728799*x-456533) [#1736] 127- Rg_to_ff: incorrect type in zk_to_ff [#1755] BA128- nfsubfields could fail [#1758] 129- rare SEGV in ArtinNumber [#1759] 130- K.codiff incorrect if [K:Q] > 2 131- chinese([]) -> '1' instead of Mod(0,1) 132- m1=Mod(0,1);m2=Mod(1,x^2+1); chinese(m1,m2) -> m1; chinese(m2,m1) -> m2 [instead of error] 133- nfrootsof1(polcyclo(85)) -> 85 instead of 170 [#1766] 134- at \p19, polroots((x+1)^2 * (x-1)^7 * (x^2-x+1)^5 * 1.0) -> SEGV [#1767] BA135- ellsea returned the trace instead of the cardinal as documented. BA136- ellsea(,,1) could return a wrong result [#1768] 137- rnfconductor: sanity checks were not taken into account MC138- memory leak in pari_close: sopath not freed HC139- incgam(30,60) < 0. More generally, wrong results for s >> 1 [#1689] HC140- excessive loss of accuracy in incgam, incgamc, eint1 141- isprimepower(30011^(3*17)) returned 0 142- a = Mod(1,x); z = Mod(0,Pol(1)); chinese(a, z) works but chinese(a, simplify(z)) failed BA143- [mpi] interrupt/alarm could caused a crash BA144- [mpi] relinking empty t_LIST caused a crash 145- ispower(t_POL) didn't work in small characteristic [#1779]; make it work over finite fields BA146- my(s=1,a=0);forstep(i=1,20,s,s++;a+=i);a -> wrong result KR147- gphelp -detex: accented letters counted as 1 char for line splitting but rendered as 2 148- sqrt(0) -> loss of accuracy (sqrtn was correct) 149- nfgaloisconj(t_POL T) was unnecessary slow when large divisors of disc(T) were internally detected (and subsequently ignored) BA150- elltatepairing could return wrong results [#1784] 151- padicappr(x^3+1,-2+O(2^5)) -> SEGV [mod a root mod p] [#1793] 152- K = bnrinit(bnfinit(y^2-5),[1,[1,1]]); bnrdisc(K) -> wrong [#1804] 153- ellztopoint(ellinit([-1,0]), I) -> wrong result [#1800] Potentially affected all elliptic functions (ellwp,ellzeta,ellsigma) at real or pure imaginary arguments. 154- gamma(2+x) did not start with an exact 1, unlike gamma(1+x). lngamma(2+x) didn't have valuation 1 155- gamma(t_INT+x) at large accuracy and seriesprecision was very slow, even for small t_INTs (same for lngamma and psi). E.g. at \p1000 gamma(1000+x+O(x^100)) 156- a=Mod(y,y^2+1); Mod(a, x^2-2) == a returned 0 [#1806] 157- x \/ y did not conform to documentation when either x or y was a t_REAL. E.g. 28/10 \/ 1 == 3 but 2.8 \/ 1 == 2. Now both return 3 [#1811] BA158- digits(N,B) with 31/63 bit B could return wrong result BA159- [pthread] parallel GP could leak memory 160- ellinit(E, O(p^n)) was slightly incorrect for E / Q [ started by approximating exact equation mod p^something instead of keeping everything exact ] 161- ellinit(E, O(2^n)) was hardly supported, e.g. ellinit("14a1",O(2^5)).tate => precision too low in p-adic AGM. BA162- polrootsmod(x^3-1, not a prime) -> SEGV (BIB) BA163- [windows] MPQS could fail due to temporary files 164- matsnf([27, 0; 0, 3; 1, 1; 0, 0],1+4) -> SEGV 165- gcd(Mod(1,2)*x+Mod(1,2), Mod(0,2)) -> Mod(1,2) 166- qfperfection() only allowed matrices of small norm [#1719] 167- wrong formula for poldisc when characteristic divides degree [#1831] 168- wrong result for poldisc(ZX) in huge degree [#1830] 169- missing typechecks in ellheight() [SEGV on BIB] 170- ellminimalmodel() didn't use a coprime bases so that it was very slow for [c4,c6] = [p^5*q, p^6*q] for huge p and q BP171- ellpointtoz(E / Qp) was totally wrong [#1833] 172- genus2red(177*x^6+126*x^5-63*x^4+72*x+84) -> bug in labelm3 [#1826] 173- normalize genus2red stable reduction output: a type K1-K2-r now guarantees K1 <= K2 (before both K1-K2-r and K2-K1-r could occur) 174- gmulsg(0, 1+O(x)) -> O(x^0) instead of t_INT 0 as in gmul(gen_0, ...) Added 1- add optional argument to sumdigits to specify the base 2- [libpari] bits_to_int,bits_to_u,binary_zv,binary_2k,binary_2k_nv BA 3- [GP] support for variadic GP functions (f(v[..])=expr) 4- nfeltval(K, x, pr, &y) now takes an optional 4th argument, containing the part of x coprime to pr. BA 5- [libpari] New functions family RgXn: new functions RgXnV_red_shallow, RgXn_powers, RgX_RgXnV_eval, RgX_RgXn_eval, RgXn_reverse, RgXn_inv, RgXn_exp BA 6- [libpari] New functions Flv_inv BA 7- [libpari] New functions Flx_Flv_eval, Flv_Flm_polint, FpX_FpV_eval, FpV_FpM_polint WH 8- [libpari] New low-level functions get_Fl_inv, remll_pre BA 9- [libpari] New low-level functions Fl_sqr_pre, Fl_mul_pre, remlll_pre, Fl_powu_pre, Fl_sqrt_pre, divll_pre, random_Fle_pre 10- [TeX documentation] new primitive \url (verbatim arg) 11- [libpari] New functions Fq_log, gener_Fq_local BA 12- GP functions bnrisgalois, bnrgaloismatrix, bnrgaloisapply LGr13- GP function polrootsreal 14- GP constant "oo" (for +/- infinity) 15- [libpari] New functions mkoo, mkmoo, inf_get_sign 16- [libpari] New functions ellbasechar, ec_f_evalx, ec_dfdx_evalQ, ec_dfdy_evalQ, ec_2divpol_evalx, ec_half_deriv_2divpol_evalx, ec_h_evalx, ec_dmFdy_evalQ, ec_bmodel HIL17- GP functions ellisogeny, ellisogenyapply 18- [libpari] New function RgX_coeff BA 19- [libpari] New functions Fl_halve, Fp_halve, Flx_halve, Fq_halve BA 20- [libpari] New functions vecsmallpermute, vec_append 21- GP functions qfsolve, qfparam [ adapted from Denis Simon's qfsolve.gp ] 22- [libpari] New function ZM_transmul 23- allow elliptic curves over number fields: ellinit([a1,...,a5], nf) 24- [libpari] ZX_sturm, ZX_sturmpart, RgX_sturmpart 25- [libpari] RgXQV_RgXQ_mul 26- thue / thueinit now also support (powers of) imaginary quadratic equations BA 27- [libpari] ZpX_ZpXQ_liftroot, ZpX_ZpXQ_liftroot_ea 28- [libpari] fuse_Z_factor 29- ellformalw, ellformalpoint, ellformaldifferential, ellformallog, ellformalexp, ellnonsingularmultiple, ellpadicheight, ellpadicheightmatrix, ellpadics2, ellpadiclog BA 30- [libpari] functions FpX_powu, FpX_digits, FpX_fromdigits, FpXQX_powu, FpXQX_digits, FpXQX_fromdigits, FqX_powu BA 31- GP functions ellpadicfrobenius, hyperellpadicfrobenius, hyperellcharpoly 32- [libpari] function RgX_normalize BA 33- much faster matfrobenius/minpoly(t_MAT) BA 34- prototype codes U and u for ulong 35- allow testing for BITS_IN_LONG in gprc 36- GP functions msinit, ellpadicL BA 37- [mingw] support for the alarm GP function BA 38- [libpari] functions Fl_sqrtl, Fl_sqrtl_pre 39- [libpari] function ZV_allpnqn 40- [libpari] function Qevproj_init, Qevproj_apply, Qevproj_apply_vecei 41- [libpari] functions G_ZGC_mul, G_ZG_mul, ZGC_G_mul, ZGC_Z_mul, ZG_G_mul, ZG_Z_mul, ZG_add, ZG_mul, ZG_neg, ZG_normalize, ZG_sub, ZGC_G_mul_inplace, ZGCs_add 42- [libpari] function kroui BA 43- GP function powers and libpari function gpowers 44- flag LLL_COMPATIBLE for LLL routines [ use 64-bit compatible accuracies only ] BA 45- [libpari] functions FpX_Frobenius, FpX_matFrobenius, Flx_Frobenius, Flx_matFrobenius, ZpX_Frobenius, F2x_Frobenius, F2x_matFrobenius 46- [libpari] function ser_isexactzero BA 47- [libpari] functions ZV_chinese, Z_ZV_mod, Z_nv_mod, nmV_chinese_center BA 48- GP function fromdigits BA 49- [libpari] functions Zp_sqrt, ZpXQ_sqrt 50- GP functions mscuspidal, mseisenstein, msnew, mssplit, msqexpansion, mshecke, ellmsinit, msatkinlehner, msstar, mseval, mspathgens, mspathlog, msissymbol, msfromcusp, msfromell BA 51- GP declaration localprec(), localbitprec() HIL52- [libpari] functions Fl_powers_pre, Fl_ellj_pre, Fl_elldisc_pre, Fl_elltwist_disc BA 53- [libpari] functions Fl_powers, Fp_powers, Fl_ellj, Fl_elldisc, Fl_ellj_to_a4a6, Flxq_ellj_to_a4a6 BA 54- [libpari] functions FpXQX_div_by_X_x, FqX_div_by_X_x HIL55- [libpari] function Flx_oneroot_split, zxX_to_FlxX, RgXY_degreex BA 56- [libpari] functions Flv_inv_pre, Flv_inv_inplace, Flv_inv_pre_inplace HIL57- GP function ellissupersingular HIL58- [libpari] functions Fp_elljissupersingular, FpXQ_elljissupersingular BA 59- [libpari] functions umodsu, zx_to_Flx, corediscs 60- GP function qfbredsl2 61- [libpari] functions ell_is_integral, ellintegralmodel, ellQ_get_CM, ellorder_Q, ellap_CM_fast, point_to_a4a6, point_to_a4a6, Fl_elltrace_CM, Fle_changepoint, Fle_changepointinv, Fle_log 62- allow elltors and ellorder for E/K number field 63- GP function ellxn, ellisdivisible HIL64- [libpari] function family Flj_* 65- [libpari] idealprimedec_limit_f, idealprimedec_limit_norm 66- [libpari] modpr_get_p, modpr_get_T, modpr_get_pr 67- GP function nfsplitting HIL68- [libpari] functions Flv_dotproduct_pre, Flx_eval_pre, Flx_eval_powers_pre, FlxY_eval_powers_pre, FlxY_evalx_powers_pre HIL69- GP functions polclass, polmodular BA 70- ellcard over fields of medium characteristic (SEA, Kedlaya, Satoh) 71- GP functions varhigher() / varlower() / variables() BA 72- GP function self() (for defining recursive anonymous functions) BA 73- GP function fold() 74- [libpari] hash_create_ulong, hash_create_str, hash_select, hash_remove_select, hash_keys, hash_values 75- allow serlaplace(t_POL) 76- GP function ispseudoprimepower 77- [libpari] functions FpM_add, Flm_add, FpM_Fp_mul, RgMrow_zc_mul 78- [libpari] function nfembed, nfissquarefree 79- new binary flag to polcompositum: assume fields are linearly disjoint 80- GP function nfcompositum AP 81- [GP] associative and central simple algebra package, functions algabsdim algdisc algisramified algrandom algadd algdivl algissemisimple algrelmultable algalgtobasis algdivr algissimple algsimpledec algaut alghasse algissplit algsplittingdata algb alghassef algleftmultable algsplittingfield algbasis alghassei algmul algsplittingmatrix algbasistoalg algindex algmultable algsqr algcenter alginit algneg algsub algcentralproj alginv algnorm algsubalg algchar alginvbasis algpoleval algtableinit algcharpoly algisassociative algpow algtensor algdecomposition algiscommutative algprimesubalg algtrace algdegree algisdivision algquotient algtype algdim algisdivl algradical algisinv algramifiedplaces 82- [libpari] functions rnf_get_alpha, rnf_get_idealdisc, rnf_get_k 83- [libpari] functions ZC_is_ei, RgC_is_ei, ZM_Z_div, ZMV_to_FlmV, checkal 84- [libpari] functions cbrtr, cbrtr_abs 85- nfinit(rnf) now returns an nf structure associated to rnf.polabs 86- idealprimedec now allows an optional 3rd argument, to limit f(P/p) 87- [libpari] cb_pari_err_handle callback 88- [libpari] function nf_get_ramified_primes 89- Configure --with-runtime-perl option PB 90- Faster matrix multiplication over finite fields 91- allow content(t_VECSMALL) 92- [libpari] ZX_div_by_X_1 HC 93- intnumgauss / intnumgaussinit: Gauss-Legendre quadrature LGr94- GP function sinc HC 95- contfracinit / contfraceval functions HC 96- limitnum / asympnum BA 97- [libpari] functions FlxV_prod, RgV_prod BA 98- GP function ellfromeqn HC 99- gammamellininv, gammamellininvasymp, gammamellininvinit BA 100- [libpari] RgX_Rg_eval_bk, RgX_RgV_eval, RgXV_RgV_eval 101- [libpari] RgX_cxeval HC 102- GP function zetamult PB 103- ZM_mul: Add Strassen-Winograd algorithm 104- GP functions sumnummonien/sumnummonieninit 105- [libpari] RgM_gram_schmidt, RgM_Babai BA 106- GP function cotanh 107- support sign(t_QUAD with positive discriminant) 108- comparison operators (<,>,<=,>=): support t_QUAD with *same* positive discriminant BA 109- [libpari] Flv_prod, Flv_prod_pre BA 110- [libpari] Flv_neg, Flv_neg_inplace ED 111- mingw64 support BA 112- [parallel] new GP function parforvec BA 113- [libpari] Fl_addmul_pre, Fl_addmulmul_pre BA 114- [libpari] Fl_eltwist, Fp_elltwist, FpXQ_elltwist, Flxq_elltwist, F2xq_elltwist BA 115- GP functions elltwist, ellminimaltwist 116- [libpari] omegau, bigomegau VB 117- GP support for 0xffff and 0b1111 (input t_INT in binary or hex notation) BA 118- GP functions ellisomat HC 119- GP function ramanujantau PB 120- Speed up {Flx,FpX,FpXQX}_divrem_basecase for modulus of the form x^n+O(x^m) with m small HC 121- GP function solvestep 122- [GP] New lfun family of functions lfun lfundiv lfunmfspec lfunabelianrelinit lfunetaquo lfunmul lfuntheta lfunan lfunhardy lfunorderzero lfunthetainit lfuncheckfeq lfuninit lfunqf lfunzeros lfunconductor lfunlambda lfunrootres lfunartin lfuncreate 123- [libpari] nfchecksigns, idealchineseinit JD 124- [libpari] gp_read_str_multiline BA 125- [libpari] Flx_nbfact_Frobenius, FpX_nbfact_Frobenius 126- extend idealchinese() to impose sign conditions at specified real places [#1501] 127- [libpari] qfb_equal1, qfi_order, qfi_log, qfi_Shanks 128- [libpari] RgV_kill0 BA 129- factorcantor: use Shoup-Kaltofen algorithm (much faster) BA 130- [libpari] FpX_dotproduct, Flx_dotproduct JK 131- FpXQ_minpoly/Flxq_minpoly: use Shoup algorithm (much faster), and do not assume modulus is irreducible BA 132- [libpari] idealramfrobenius, idealfrobenius_aut, nfgaloispermtobasis 133- Allow ??lfun, ??Lmath, etc. [#1753] 134- [libpari] cyc_normalize, char_normalize, char_check, char_rootof1, char_rootof1_u, bnrchar_primitive, bnrconductor_i 135- GP functions charker, bnrchar 136- bnrconductor(bnr, chi) as a shortcut for bnrconductor(bnr, Ker chi); same for bnrisconductor, bnrdisc and bnrclassno 137- [libpari] real_1_bit(), grootsof1() PB 138- [libpari] Flm_sub, FpM_sub BA 138- [libpari] get_FpXQX_mod, get_FpXQX_degree, get_FpXQX_var, FpXQX_get_red, FqX_get_red, random_FpXQX BA 139- [libpari] get_FlxqX_mod, get_FlxqX_degree, get_FlxqX_var, FlxqX_get_red, random_FlxqX BA 140- Prototype code 'b' and default 'realbitprecision' 141- \pb shortcut [ manipulate realbitprecision ] BA 142- [GP] Map, mapget, mapput, mapisdefined, mapdelete BA 143- [GP] bitprecision BA 143- [arm64] add aarch64 assembly kernel 144- [libpari] ZV_snf_group, ZV_snfall 145- [libpari] znstar0 with Idealstar semantic; could be made available under GP as default znstar, but current znstar/idealstar have incompatible defaults. Called by idealstar(,N). 146- [GP] znconreychar, znconreyexp, znconreylog, znconreyconductor, charorder, charconj BA 147- [GP] call (for calling closures). 148- [GP] optional flag to forell [ loop over isogeny classes ] 149- lfunthetacost, lfuncost SCh150- [mingw] timer: support for user time JD 151- [libpari] pari_completion interface for readline SCh152- [mingw+pthread]: default nbthreads support 153- teichmuller([p,n]) to cache all value at i + O(p^n), 1 <= i < p 154- optional argument 'tab' to teichmuller(x) 155- [GP] function chareval, charmul, chardiv, zncharinduce, zncharisodd 156- [libpari] Flm_intersect 157- [libpari] ggamma1m1 158- allow ispower(t_POLMOD representing a finite field element) 159- [libpari] Fq_ispower, FqX_ispower, RgX_deflate_order, Fq_to_FF, FqX_to_FFX 160- [libpari] Z2_sqrt, divisorsu_fact, usumdiv_fact, usumdivk_fact 161- gphelp -detex: new flag -utf8 to allow utf-8 encoding in output, e.g. render \'{e} as é (the actual eight-bit char) instead of 'e 162- GP function msfromhecke, msgetlevel, msgetweight, msgetsign BA 163- qfisominit: allow to pass the matrix of minimal vectors [#1656] 164- [libpari] GENtostr_raw BA 165- [libpari] FlxqX_halfgcd, FpXQX_halfgcd 166- issquare(t_POLMOD of t_INTMOD) assuming a finite field 167- RgXn_powu, RgXn_powu_i 168- [libpari] is_real_t, R_abs, R_abs_shallow BA 169- [libpari] F2xX, F2xqX, F2xqXQ family functions 170- GP functions rnfidealprimedec, rnfidealfactor BA 171- [libpari] get_FpX_algebra, get_FpXQ_algebra, get_FpXQX_algebra, get_FlxqXQ_algebra, get_FpXQXQ_algebra, get_Rg_algebra 172- E/Qp: Added Mazur-Tate-Teitelbaum's L invariant to E.tate BA 173- [libpari] ZpXQ_div, ZpXQX_divrem, ZpXQX_digits 174- [libpari] ZX_deflate_max, ZX_deflate_order 175- [libpari] idealinv_HNF, idealinv_HNF_Z 176- [libpari] QM_charpoly_ZX_bound BA 177- libpari support for low-res plot() 178- GP function serprec 179- ellap(E, p), ellcard(E,p) for E/K number field, and p maximal ideal 180- [libpari] function sertoser 181- ellan(E, n) for E/K number field 182- [libpari] function gisexactzero BA 183- GP function ellsea 183- [libpari] nfsub, Rg_RgC_sub, Rg_RgC_sub, Z_ZC_sub 184- [libpari] zkchinese, zkchinese1, zkchineseinit 185- [libpari] vecsmall_reverse 186- [libpari] Z_ppio, Z_ppgle, Z_cba 187- ellminimalmodel over number fields 188- [libpari] FpX_factor_squarefree, Flx_factor_squarefree 189- [libpari] checknf_i, checkbnf_i, checkbid_i, checkrnf_i Changed 1- make log(+/-I) return (+/-)Pi/2*I with gen_0 real part [#1556] BA 2- [libpari] rename RgX_mullow -> RgXn_mul, RgX_sqrlow -> RgXn_sqr, RgX_modXn_eval -> RgXn_eval, RgX_modXn_shallow-> RgXn_red_shallow 3- change rnfnormgroup to return [;] instead of raising an error whenever it detects a problem (modulus not a multiple of the conductor, non-abelian extension...): this is a BIB with undefined result, but returning a sentinel is more useful *if* we notice it. 4- [gp] uniformize errors from the % history operator (SYNTAX->MISC) [#1553] 5- t_STR used to compare as larger than any real number via < or > operators. Such a comparison now raises an exception. 6- valuation(0,p), nfeltval(nf,0,pr), idealval(nf,0) now all return +oo poldegree(0) now returns -oo BA 7- rootpadicfast renamed ZpX_roots 8- nfinit: switch from sturm() to ZX_sturm() [Uspensky], and from polroots to polrootsreal (totally real fields). polsturm() now uses Uspensky in most cases. 9- polsturm interface change - polsturm(T, a, b) is still supported but deprecated, use polsturm(T, [a,b]) - polsturm(T, a, b) used to return the number of roots in ]a,b], we now use the closed interval [a,b]: more intuitive given the new syntax, and compatible with polrootsreal() BA 10- [libpari] mkintn: handles arguments as 32bit unsigned int 11- nfdisc, nfbasis: no longer support the old (T,flag,fa) arguments. Use the generic [T,listP] syntax (see 2.6.0-C105) 12- factorpadic: no longer support the deprecated (no-op) 'flag' argument 13- thue() sort solutions lexicographically 14- thueinit tnf format: always include a bnf (also when r1=0), to allow checking for norm equation solutions first: e.g. thue(x^4+1,7*10^80) becomes instantaneous instead of overflowing BA 15- Flx_pow renamed to Flx_powu 16- optional flag to ellheight is gone (useless) 17- ellbil(E,P,Q) is now deprecated, use ellheight(E,P,Q) 18- [libpari] rename ghell->ellheight, mathell->ellheightmatrix BA 19- Rg_to_RgV renamed to Rg_to_RgC, RgX_to_RgV renamed to RgX_to_RgC 20- ellL1(e, r): make r optional (default value = 0) BA 21- powruvec is replaced by powersr 22- [libpari] merge_factor no longer keeps entries with exponent 0 Pmo23- More robust and much faster ellL1 and ellanalyticrank. The condition ord(L_E,s=1) <= r in ellL1(E,r) is no longer necessary. 24- renamed ZV_gcdext -> ZV_extgcd for consistency with other gcdext methods BA 25- setrand now return a (huge) integer instead of a vecsmall 26- unify 32/64 bit random generators. Probabilistic algorithm should now behave identically on all architecture, provided they do not involve the floating point kernel 28- unify 32/64 bit tests 29- move extern(), externstr(), readstr() and system() to the generic part of GP language (was gp-specific). This allows to use them in parallel mode and under gp2c [#1593] 30- made cmprr, cmpri, equalrr consistent with == semantic. We now have, e.g., 0e1==1.0 and (0e1 < 1) = 0 (since 1-0e1 evaluates to 0e1) 31- [libpari] comment out function names obsoleted during the 2.3.* cycle (2007). See PARI_OLD_NAMES. 32- default 'strictmatch' has been obsoleted. It is now a no-op. 33- default 'compatible' has been obsoleted. It is now a no-op. 34- zeta(odd integer): use Borwein's "sumalt" algorithm (10 times faster than previous at \p1000) 35- elltors flags are now deprecated (and ignored, removed corresponding code) 36- add optional flag to nfhnf / nfsnf: return transformation matrices 37- nfroots/nffactor: factor polynomials in Q[X] over Q first BA 38- much faster polresultant over Z 39- GP and libpari polynomial variables of arbitrary priority can now be created: 'x' is no longer guaranteed to have maximal priority, nor MAXVARN to have minimal priority. 40- GP: polynomial variable 'y' is now always defined on startup, with priority lower than 'x' 41- Allow ffgen([p,f]) in addition to ffgen(p^f) and ffgen(T*Mod(1,p)) 42- thue() needed to compute to huge accuracies when regulator was large E.g. t=thueinit(15*x^3+8*x^2-95*x+24,1); thue(t,8) 43- rnf structures may now contain a full absolute nf struct ('nfabs') 44- matkerint: replace underlying LLL algorithm by mathnf Simple bench: M=matrix(50,55,i,j,random(10^5)); \\ 200 times faster 45- allow t_VECSMALL vector exponents in gen_factorback 47- [libpari] rename 'define' PI -> M_PI and use proper constant 48- no longer print 0 t_POLMOD as "0", bug e.g. Mod(0,x). Uniformize code and behaviour with t_INTMOD. 49- warn when coercing quotient rings when 'debug' non-zero ? \g1 ? Mod(1,2)+Mod(1,3) *** _+_: Warning: coercing quotient rings; moduli 2 and 3 -> 1. 50- content([]) -> 0 [ was 1 ] 51- [] / 0 => div. by 0. Now returns [] (as [] \ 0 already did) LGr52- use GRH-guaranteed bounds in bnfinit for residue estimate 53- Configure: avoid inserting unnecessary -L arguments in link line 54- genus2red: change syntax. Allow either genus2red(P) or genus2red([P,Q]) instead of mandatory Q (was: genus2red(Q,P) with Q almost always 0). Allow uniformization with hyperellcharpoly 55- old functions from gp-1.39.15 no longer loaded into an "entree" table, no longer complete specially "whatnow" arguments; remove compat.c and most of gp_init.c BA 56- Rename row_Flm -> Flm_row, row_zm -> zm_row 57- rewrote intnum / intnuminit routines 58- nucomp now takes L = floor(|D|^(1/4)) as a 3rd argument. Former nucomp(x,n) is nucomp(x,n,NULL). BA 59- divide_conquer_assoc renamed to gen_product 60- sumnum algorithm (replace Abel-Plana by Euler-Mac Laurin). Changed the interface ! BA 61- [libpari] concat, concat1 renamed to gconcat, gconcat1 62- rnfconductor now returns [cond, bnr, H] instead of [cond, bnr.clgp, H] 63- nfrootsof1(), more stringent ramification tests: looking for a subfield Q(zeta_p^k) is now faster. 64- intnumromb to use realbitprecision 65- idealstar / ideallog: allow omitting 'nf' argument (for nf = Q; use znstar and znlog internally) 66- improved p-adic log at high accuracy (O(sqrt(padicprec)) algorithm instead of O(padicprec)) 67- allow genus2red to handle (rational) non integral models KR 68- new version of misc/xgp BA 69- rename Flc_Fl_mul -> Flv_Fl_mul, Flc_Fl_div -> Flv_Fl_div, RgC_to_Flc to RgV_to_Flv, F2c_to_Flc to F2v_to_Flv 70- rename leading_term -> leading_coeff, constant_term -> constant_coeff 71- improve gamma(a+O(x)) BA 72- Z_to_Flx now takes a shifted variable number, as Fl_to_Flx. BA 73- improve hash_GEN to reduce # of collisions (change glue) 74- added explicit ways to attach an absolute nf to a rnf structure, allowing rnf functions to return objects in standard notation (e.g. ideals in HNF instead of as a vector of t_POLMOD generators). Add optional flag to rnfeltabstorel, rnfeltdown, rnfeltup, rnfidealreltoabs, rnfinit BA 75- rename FlxqX_pow to FlxqX_powu 76- polredabs([T,listP]) no longer returns 0 if the attached order cannot be proven to be maximal: it computes the expected canonical polynomial in all cases, which can be very slow. Always use polredbest() if you don't require a canonical output. 77- polredabs(T) now internally uses the polredabs([T,listP]) strategy, making it much faster in favourable cases, while still always returning a canonical defining polynomial. 78- precision(0), bitprecision(0), padicprec(0,p) now all return +oo under GP [ used to return LONG_MAX ] 79- meaning of precision(x, n) no longer depends on the type of x: it now always refers to floating point precision. Before the change: precision([O(2),O(3),O(x)], 10) -> [O(2^10),O(3^10),O(x^10)] 80- infinite slopes of newtonpoly replaced by "+oo" (instead of 2^63-1) 81- rename anell -> ellan, anellsmall -> ellanQ_zv BA 82- Fp_ellcard_SEA/Fq_ellcard_SEA meaning of flag has changed. 83- renamed absi_cmp -> abscmpii, absr_cmp -> abscmprr, absi_equal -> absequalii, absi_factor -> absZ_factor, absi_factor_limit -> absZ_factor_limit, equaliu -> absequaliu, equalui -> absequalui, cmpiu -> abscmpiu, cmpui -> abscmpui Removed 1- deprecated functions nfbasis0, nfdisc0, factorpadic0 2- deprecated function manage_var 3- useless function intnuminitgen (not very useful and impossible to use reliably together with intnum with boundary conditions) 4- useless function intnumstep: instead of intnum(a,b, intnumstep()+m), use intnum(a,b,m). 5- partially implemented functions intfouriercos / intfouriersin / intfourierexp / intlaplaceinv / intmellininv / intmellinvshort: use intnum (possibly intfuncinit). Make sure to indicate oscillating behaviour when function decrease slowly at oo 6- optional flag to intfuncinit BA 7- divide_conquer_prod: use gen_product instead 8- useless function sumnumalt 9- badly implemented functions zetakinit / zetak: the interface did not make sense (it is impossible to initialize for Dedekind zeta without specifying a domain where the function is to be evaluated). Closest equivalent to zetakinit: L = lfuninit(x^2+1, [c, w, h]); to compute zeta_Q(i)(s) for |Re(s - c)| < w, |Im(s)| < h. Then lfun(L, s) as an analog to zetak(). Or directly lfun(x^2+1, s) if a single value is needed. [#368, #1647] BA10- [libpari] FpXQX_rem_Barrett, FpXQX_divrem_Barrett: use FpXQX_get_red BA11- [libpari] FlxqX_rem_Barrett: use FlxqX_get_red BA12- [libpari] RgX_RgM_eval_col K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 69 50 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `