Karim BELABAS on Wed, 11 Sep 2002 04:39:28 +0200 (MEST) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: polredabs(,16) |
On Tue, 10 Sep 2002, Igor Schein wrote: > here's my typical case: > > \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ > ? \g1 > debug = 1 > ? polredabs(x^5 - x^4 - 12040781642129393071473904079660253048973811141573673202071693733789883279680587178494462996841316092777725721420479505331283827775*x^3 - 116300336972049690721017379544011576959110565146852966482595449932712559384985831383994266783651912069750389914648201847477549301891914579908523180930736074973601542737568062514475655562681165257*x^2 + 28923689262054691329826006244861882371486999095000166029365674110538452285217184588858628779585349092052020333450432011025074302859688823005297537508940396134093079707594458414327414841760790952734653966377901305736384509781946321196510075808623517993691862754*x + 603824510472333552906408309566519552483702548276229044880954577047602509786254891391799969614095483303548612156918564165324598251084001744566522007323003494588591405487402336312858426924318657537215114711342084660305244042075747811000122705478017654708300091827976086505455932507386781142134969661181915101523617253014533937,16) [...] > The polynomial is not reduced, and the only way I know about it is if > I run at \g, otherwise it's completely silent. I would like to have > an option to have > 62277548538789561520401660217885073427574453048708934544094318214969928190701341602751 > from the example above factored: > > ? factor(62277548538789561520401660217885073427574453048708934544094318214969928190701341602751) > > [524351 15] > > So basically, leave polredabs(,16) behave as it does now, and have, > say, polredabs(,24) factor JUST the composites that appear in > impossible inverse. Not necessary. It was a bug in allbase(), introduced by my recent patch [ try to recover when exception "impossible inverse mod..." is raised ]. It is allowed to have pseudoprimes in the discriminant factorization, but it is crucial that these be coprime ! I have modified the recovery code to enforce this (thereby discovering new factors, and reducing the number of failures). Does any of your examples break it ? Karim. -- Karim Belabas Tel: (+33) (0)1 69 15 57 48 Dép. de Mathematiques, Bat. 425 Fax: (+33) (0)1 69 15 60 19 Université Paris-Sud Email: Karim.Belabas@math.u-psud.fr F-91405 Orsay (France) http://www.math.u-psud.fr/~belabas/ -- PARI/GP Home Page: http://www.parigp-home.de/