Karim BELABAS on Wed, 11 Sep 2002 16:15:15 +0200 (MEST) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Bug in ellap() (fwd) |
Hi, I have been notified of the following bug [ couldn't get back to the person who sent it to me, maybe he reads this list? ]. It still occurs in the development versions, and is not Linux or ix86 specific. It is a bug in apell1(), my implementation of Shanks/Mestre (with Montgomery's trick). apell1() is quite fast for "smallish" primes, competitive with more sophisticated systems like Magma I believe [ in this range. It can't compete with SEA for large primes ]. Mark Watkins already fixed two fatal bugs in version 2.2.3 but apparently (at least) one still remains. I'll see whether I can debug it today and include a fix in the 2.2.4 release. Cheers, Karim. -- Karim Belabas Tel: (+33) (0)1 69 15 57 48 Dép. de Mathematiques, Bat. 425 Fax: (+33) (0)1 69 15 60 19 Université Paris-Sud Email: Karim.Belabas@math.u-psud.fr F-91405 Orsay (France) http://www.math.u-psud.fr/~belabas/ -- PARI/GP Home Page: http://www.parigp-home.de/ ---------- Forwarded message ---------- From: Mariusz Wodzicki Subject: Bug in pari 2.1.4/2.2.3alpha Attached is a transcript of a gp session which demonstrates that there is a bug in `ellak' for version 2.2.3alpha (using version 2.1.4 yields identical results). I inserted newlines for added clarity. I encountered a few more times similarly anomalous behaviour of ellak with other elliptic curves. I should add that the curve E below is *minimal*. Mariusz Wodzicki ----------------- transcript ---------------- [...] GP/PARI CALCULATOR Version 2.2.3 (alpha) i686 running linux (ix86 kernel) 32-bit version [...] (12:27) gp> \p60 realprecision = 67 significant digits (60 digits displayed) (12:27) gp> E=ellinit([0,0,0,-10301051460877581926458079712219,-12725370882271967125361344545020920373899020890]) %1 = [0, 0, 0, -10301051460877581926458079712219, -12725370882271967125361344545020920373899020890, 0, -20602102921755163852916159424438, -50901483529087868501445378180083681495596083560, -106111661199648164770391379334345694007911188530334641857903961, 494450470122123932469987826186512, 10994720442282979596312201686898075203048754048960, 8801325626543617378715342567179875645441710041821751172223331378176, (161935064091375222999942961340808268663260869557849454245947360648340530772065772436358548068 /11790184577738684974487931036710010027437133007841637694272081), [3706040377703690.00000000000000000000000000000000000000000000] [-1853020188851832.99999999999999999999999999999999999999999999] [-1853020188851856.99999999999999999999999999999999999999999999] , 0.0000000421355987656810350996504853117175654178286539772459306919417, (0.00000048080967492056690534766737916855648085 I), -39039057.591083919369470251185399511402, (-520034125.18279377438408853673963614503 I), 2.0259203545110538634939491248112513723 E-14] (12:28) gp> isprime(1167254453) %2 = 1 (12:29) gp> ellak(E,1167254453) %3 = 9338178810 (12:29) gp> 2*sqrt(1167254453) %4 = 68330.2115612120726880311365437175076642446854767291314157246 %%% VIOLATES HASSE's INEQUALITY (12:30) gp> isprime(2015279269) %5 = 1 (12:30) gp> ellak(E,2015279269) %6 = 3274667602 (12:30) gp> 2*sqrt(2015279269) %7 = 89783.7238924739632566262868661064123805896777931596322638617 %%% VIOLATES HASSE's INEQUALITY