Bill Allombert on Wed, 26 Feb 2003 19:05:22 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: zetakinit() puzzle |
On Wed, Feb 26, 2003 at 06:01:41PM +0100, Karim BELABAS wrote: > On Wed, 26 Feb 2003, Bill Allombert wrote: > > What is a bug in a sense is the following: > > > > ? sin(2^22) > > %1 = 0.9751293949417070368170374003 > > ? sin(2^22*1.) > > %2 = 0.9751293949417070368170374003 > > ? sin(2^22+.) > > %3 = 0.9751293949417070368170274962 > > The correct result being the last one. > > Yes, this is quite a different situation. When the input is exact, > counter-measures can be taken. > > > sin() could be smart enough to reduce mod 2Pi correctly when the > > input is exact, using sizedigit(x\3)+prec digits of Pi instead of prec. > > > > The following patch fix that for sin, cos, tan, cotan and sincos (used by > > exp(I*x)). This is not perfect, since sometimes the result will have more > > than default(realprecision) words of precision. > > This should be trivial to fix: results are t_REAL. Just affrr them to > cgetr(prec) and remove the gerepiles [ which are slightly slower anyway ]. > > To be extra careful, you could check for an exact 0 input and directly return > realzero(prec) / realun(prec) instead. But it shouldn't make any difference. > > Of course, we have the same kind of problems with exact t_COMPLEX and > t_QUADs... I suppose gsincos take care of t_COMPLEX ? t_QUAD are more tricky to handle. Here a new patch (that still need to change the bench). Now, I wonder if mpsc_exact is an overkill. Should not mpsc_exact(GEN x,long prec){return gadd(x,realzero(prec));} be as good, and work for exact t_QUAD as well ? Index: src/basemath/trans1.c =================================================================== RCS file: /home/megrez/cvsroot/pari/src/basemath/trans1.c,v retrieving revision 1.81 diff -u -r1.81 trans1.c --- src/basemath/trans1.c 2003/01/15 20:46:02 1.81 +++ src/basemath/trans1.c 2003/02/26 17:54:48 @@ -1673,6 +1673,29 @@ /** **/ /********************************************************************/ +/*Transform an exact number to a real with sufficient accuracy + *to avoid precision loss in modulo Pi reduction*/ + +static GEN +mpsc_exact(GEN x, long prec) +{ + long t=typ(x); + GEN p1; + long pr=prec, d; + switch(t) + { + case t_INT: + pr += lgefint(x)-2; + break; + default: + d=lgefint(x[1])-lgefint(x[2])+1; + if (d>0) + pr += d; + } + p1=cgetr(pr); gaffect(x,p1); + return p1; +} + /* Reduce x0 mod Pi/2 to x in [-Pi/4, Pi/4]. Return cos(x)-1 */ static GEN mpsc1(GEN x0, long *ptmod8) @@ -1827,6 +1850,12 @@ gerepilemanyvec(av,tetpil,y+1,2); return y; + case t_INT: case t_FRAC: case t_FRACN: + p1=cgetr(prec); av=avma; + p2=mpsc_exact(x,prec); + affrr(mpcos(p2),p1); avma=av; + return p1; + case t_INTMOD: case t_PADIC: err(typeer,"gcos"); default: @@ -1900,6 +1929,12 @@ y[2]=lmul(p1,v); gerepilemanyvec(av,tetpil,y+1,2); return y; + + case t_INT: case t_FRAC: case t_FRACN: + p1=cgetr(prec); av=avma; + p2=mpsc_exact(x,prec); + affrr(mpsin(p2),p1); avma=av; + return p1; case t_INTMOD: case t_PADIC: err(typeer,"gsin"); @@ -1979,9 +2014,11 @@ switch(typ(x)) { case t_INT: case t_FRAC: case t_FRACN: - av=avma; p1=cgetr(prec); gaffect(x,p1); tetpil=avma; - mpsincos(p1,s,c); gptr[0]=s; gptr[1]=c; - gerepilemanysp(av,tetpil,gptr,2); + *s=cgetr(prec); *c=cgetr(prec); av=avma; + p1=mpsc_exact(x,prec); + mpsincos(p1,&ps,&pc); + affrr(ps,*s); affrr(pc,*c); + avma=av; return; case t_REAL: @@ -2098,6 +2135,11 @@ av = avma; gsincos(x,&s,&c,prec); return gerepileupto(av, gdiv(s,c)); + case t_INT: case t_FRAC: case t_FRACN: + s=cgetr(prec); av=avma; c=mpsc_exact(x,prec); + affrr(mptan(c),s); avma=av; + return s; + case t_INTMOD: case t_PADIC: err(typeer,"gtan"); default: @@ -2144,6 +2186,11 @@ case t_COMPLEX: av = avma; gsincos(x,&s,&c,prec); return gerepileupto(av, gdiv(c,s)); + + case t_INT: case t_FRAC: case t_FRACN: + s=cgetr(prec); av=avma; c=mpsc_exact(x,prec); + affrr(mpcotan(c),s); avma=av; + return s; case t_INTMOD: case t_PADIC: err(typeer,"gcotan"); Cheers, Bill.