Igor Schein on Mon, 14 Jun 2004 18:34:02 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: peculiar galoisinit() behavior |
On Mon, Jun 14, 2004 at 05:44:17PM +0200, Bill Allombert wrote: > On Fri, Jun 11, 2004 at 07:13:35PM -0400, Igor Schein wrote: > > Hi, > > > > using latest CVS, > > > > {galoisinit( > > x^64 - 224*x^62 + 23552*x^60 - 1546848*x^58 + 71168328*x^56 - 2436833952*x^5 > > 4 + 64407288512*x^52 - 1346248726816*x^50 + 22638605928092*x^48 - 3100404236 > > 90592*x^46 + 3482991142252160*x^44 - 32107751441411296*x^42 + 24044849215906 > > 9432*x^40 - 1419156581985832480*x^38 + 6021441872671174464*x^36 - 1123013514 > > 6026525344*x^34 - 82256825364060916154*x^32 + 1006806032298827456352*x^30 - > > 5675649698314152988928*x^28 + 16929909843292332382944*x^26 + 514728199833124 > > 8762616*x^24 - 319192745820875674502624*x^22 + 1645617652634320066338112*x^2 > > 0 - 4509318893445328263106912*x^18 + 6060765603004828811362460*x^16 + 159543 > > 3811519440861448928*x^14 - 17237571860589604851458432*x^12 + 155539333684122 > > 61315069024*x^10 + 11439096820765481332943688*x^8 - 248990211573927140987579 > > 84*x^6 + 12932816995946524978942144*x^4 - 2199266291848578048793312*x^2 + 20 > > 628044238087844473601 > > )} > > > > takes much longer than it should (IMO) before realizing the field is not Galois. > > galoisinit() was designed on the premices that the input is a Galois > polynomial and does not go out of its way to catch non-Galois polynomial > sooner. > > If you want a probabilistic check, use numberofconjugates: > install("numberofconjugates","lGD0,L,"); > numberofconjugates(P) > %1 = 32 > (So P has (at most) 32 automorphisms, and hence is not Galois). > > In this specific case, galoisinit() is unlucky: none of the fourty > prime numbers it tried shows that P is not galois. So is this polynomial an equivalent of a Carmichael number in some sense? :) What is the apriori probability of such scenario? Igor