Bill Allombert on Tue, 22 Jan 2019 23:38:25 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
new GP function ffmaprel |
Dear PARI developers, I have added a new gp function for expressing a finite field elements as an algebraic element over an a subfield. This is useful to compute the relative trace, norm and and minimal polynomial. ffmaprel is normally used with a partial map obtained by ffinvmap: ? a=ffgen(3^3,'a); ? b=ffgen(3^12,'b); ? m=ffembed(a,b); ? mi=ffinvmap(m); ? c=random(b); \\ absolute expression of c over F_3 %5 = b^9+2*b^8+2*b^7+2*b^6+2*b^5+2*b^4+2*b^3+b^2+b+2 ? d=ffmaprel(mi,c) \\ relative expression of c over F_3^3 %6 = Mod((a^2+a+2)*b^3+(2*a^2+1)*b^2+2*b+(a^2+a+2),b^4+(2*a+1)*b^3+b^2+(a^2+2*a)*b+(2*a^2+2*a+2)) ? trace(d)) \\ trace of c over F_3^3 %9 = a+1 ? ffmap(mi,c+c^27+c^(27^2)+c^(27^3)) %10 = a+1 ? norm(d) \\ norm of c over F_3^3 %11 = a+1 ? ffmap(mi,c*c^27*c^(27^2)*c^(27^3)) %12 = a+1 ? minpoly(d) \\ minomial polynomial of c over F_3^3 %13 = x^4+(2*a+2)*x^3+2*a^2*x^2+(a^2+a+1)*x+(a+1) ? ffmap(mi,(x-c)*(x-c^27)*(x-c^(27^2))*(x-c^(27^3))) %14 = x^4+(2*a+2)*x^3+2*a^2*x^2+(a^2+a+1)*x+(a+1) Cheers, Bill