Bill Allombert on Wed, 18 Nov 2020 13:49:34 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: bnfisintnorm(bnfinit(x^2+3),7^5) misses integral solution |
On Wed, Nov 18, 2020 at 02:22:47PM +0200, Georgi Guninski wrote: > bnfisintnorm() appears to miss integral solutions, is this > expected? > > ? bnfisintnorm(bnfinit(x^2+3),7^5) > %25 = [-149/2*x - 25/2, 133/2*x + 119/2, -147/2*x + 49/2, 147/2*x + > 49/2, -133/2*x + 119/2, 149/2*x - 25/2] > ? norm(Mod(2+x,x^2+3)^5)-7^5 > %26 = 0 > ? Mod(2+x,x^2+3)^5 > %27 = Mod(-31*x - 118, x^2 + 3) Hello Georgi, Note that the documentation says "modulo units of positive norm". Let u the third root of unity: ? u=Mod(-1/2*x+1/2,x^2+3); ? norm(u) %2 = 1 ? (-149/2*x - 25/2)*u %3 = Mod(-31*x-118,x^2+3) So the list is complete modulo units of positive norm. Cheers, Bill.