Bill Allombert on Thu, 26 Oct 2023 10:17:46 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: polgalois
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Thu, 26 Oct 2023 10:13:06 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1698307988; c=relaxed/relaxed; bh=+d1dUIzbmQ6oyijdkBr7bQVL/QMtb5+OtIBOUST46J4=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=F53aSFBfVYwS88nbtMCkKBKo41Pl/b/ZZsfDiJ5jrS9T9DvZYFHSga4Yab0IaK40kloimGs5+Hk6Ey0chnSCWN8iwxBKO/GXt0mUgZVCSPDrk4S3qSgAEnPClFGs/7J1Y/5pGAzQJJjZGieFrffzmj1h3XquG6qoP3DRdufZcGWZTdu9BsueU/1SsvkAqDonGS7Wl8slRS2YhqVxCmuoHpwFPJSJPEwyfV7HPu/VAkx82oSP0e61thMYfDsh64v+EwZstAUA4bGlgT92P7NPi2iW8dGv3tZ0Ao5nk1NpOnh6QQHyPwgVf2QGZ6nBZ8ISvBAqirvBgL0DZOa2ZfS5yXL4BY9aBBcYvpoeQcbN7PlaGjvPavGuEXNnJsNQi6o7MI4m25lgFJiZTbefRaJODZWhAiBGhHXqH+cAUtYC7vXFlrXtHIlTkgdHe3KJw+Mz/FaLtp5hkkpjMxANGET2bNzTMiI7WFLGDSq49K4kPWAVeSrZ3dgsQzB5VMZgsBwM3Ohg4Q1yxXAMpNj8UBZSRKa+vUOPvClXf6/dPxeZk+95YbHp1dJoUP+rM6X67wxX4e5aXx3XN5m78pvnnFt4X+V2/QZY29hxR3BvWBnsnuaQldVZBuuZIEGUgesXGu858b60JLDgaIO2psUtv92Toctoiu3DU8dpKIWF9Y0BrQc=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1698307988; cv=none; b=l3nJBbHQgxGyb4N7OH8TFCgSn6L39EncodWUyEvypV2KWPz64kWI27t2h4xZkFz1lxXFAsnSoUuVpBQwwiHmnnAeI93XYkAzDtY4HkE4SA6WVbSXTcaB3wZDTewAd7vLVaDRrcf2IbpqWKiZJipMYZXMoD3xYQvYY9V3MDivbt3+6fasFW6EI1JDTfv/IVWvkh0su6XQVPuZvxU9/0aTzlx9gyUPlVhynuaHtnDY1HctTaoK1vkxotamZxp+kZdZ1JBWu5iOz1iXCrNZVvy9J2ZFMp+R6y8kfXCqqPzy/W+VFFsf/NlRQBKsUvDNLv1Fw1srmfoiYsf3l3S1yYJ2llIku47+GBn0y76ywqMeWYXsmz7MuI0gq8Pvg9/Oi/uflAB0o7xQAL33myM7kHNgiIYrp8o+mSDtJEgJ36vJIUOjMd7AteSZAs653trCw+j1IrXWqE/118RaliS8IhhrDB6oE0Ygjh7inV4ZfXJql6G77s5v4JYvAhdex5nvod3W22ZqqePAJJ9bYGOo3KtjUAXkrQSzAsLdb4gEWOOSmFBkmQqcZhzPaq3inUdC5/+eCbG3ZCaPj7+xwdFzkfNAjZt8QCwHxOa+HCQhmDQEk2/WD372e8tRNryXR8AnUQtcG3/dnlDK+Z7XO861kY9n7LRjc0QJNAxMcQWMlnchUzY=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Thu, 26 Oct 2023 10:17:46 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1698307988; bh=+d1dUIzbmQ6oyijdkBr7bQVL/QMtb5+OtIBOUST46J4=; h=Date:From:To:Subject:References:In-Reply-To:From; b=lFleY89D3JDuYhrUYbNUWgecDs4ipqW053G/5ofeK/YErUzqOMMhVb91ZbKOGjtwH w45Zl/as68/YVMF3fLr4nEXKfd+NO/ME0+epEyr3QPXp6L9pWE1/SV1B2XWVbk0kdc R2kSXXZNTjYMOYpDFM3JopaceQzAzo66D7A9hnficmBeKhV2MTc0WLcwPXt4YslWUi qIgbniB7h57bZTWW12CxQ6VkVpcflT3x9Y2lbTBM6Z3UfxOLLDTo0D5h/LxMNHxW8Z Gc2INwRGQhFNgwPjvi39xaenVJS+r2fA7eVv1PvIK/AkQ4bwhp1VHomg6DGRTw3B08 qd7Q0hpvzn9RcSoQm4yIwCN5IJp9ybwC52GTRYmPo1/Q7duTSyOfIc0PkViKH5Mxj1 F7ZLiyYPYRWmXz5e3DsL7KpwBiCfKio9dsAYZ4me7xW4Y9nC6lah6SvLEDY1pAkHVN CvRnmSe0PqIb+qqbuLKX434i9TzduytfrdgeJ6KtqlHjHu/xf8XmA0Hhhx0AcA6Bcv AaNRAmbBCQJ+50OjBJW6jqfWlyuf2Huw7gjw6kFBQdDK4Qa2iki+KTiima2Edr+E3T KSydRL4kTl5eW624lBxJvKWJpE4QCMTgmBxlrYbASQZ/sGhPwS2p8mzBilAMf640CL 1cSSjgv/y4YWbq7BvXtjUS2A=
- In-reply-to: <CAM=NMZLHBnXSMeXTX+8Dyg+A64V-ZQNuunMh5+YSXA_M8QVMuA@mail.gmail.com>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <CAM=NMZLHBnXSMeXTX+8Dyg+A64V-ZQNuunMh5+YSXA_M8QVMuA@mail.gmail.com>
On Thu, Oct 26, 2023 at 07:57:13AM +0200, Harald Borner wrote:
> Bonjour,
>
> Félicitations a tous pour Pari/GP - un super package, easy to use!
>
> Une Q: avez-vous des plans pour une extension de la fonction
> polgalois
> aux degrées n>11, eg. 12-15 ou 16?? Ca serait génial...
Yes, we have been working on this for a long time, but this still does not
quite work as we hoped. We have trouble with the group-theoretical part
of the algorithm.
Also we plan for the new polgalois to return the action of the Galois group
on the roots so that one could compute the corresponding fixed field.
For groups of small order (says <=1000), one option is galoissplittinginit
which computes the Galois group of the splitting field of the polynomial.
G=galoissplittinginit(x^5-x-1); \\ S5
S=galoissubgroups(G);
H=select(s->vecprod(Vec(s[2]))==20,S)[1];
P=galoisfixedfield(G,H,1)
\\%4 = x^6+3600*x^5+8172480*x^4+14907176960*x^3+16934023065600*x^2+71434160884383744*x+86015979642640138240
polgalois(P)
\\%5 = [120,-1,1,"L(6):2 = PGL(2,5) = S_5(6)"]
Cheers,
Bill
- References:
- polgalois
- From: Harald Borner <harald.mtac.borner@gmail.com>