Bill Allombert on Thu, 18 Jul 2024 12:19:39 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: OT On an integer factoring algorithm based on smooth class number of quadratic fields
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: OT On an integer factoring algorithm based on smooth class number of quadratic fields
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Thu, 18 Jul 2024 12:19:30 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1721297976; c=relaxed/relaxed; bh=so5kR0WhyVBb11RvcodkKHIPlOyrD0Lgu3RqKHoJnGo=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=njsmbFcg0qVlPurSSs5NrBtDCKz3p1nfpkQbD8JuDTNiTeHeaE2ZUnb4PyJW6cm015rwiXLWYlQanqFOnWHAQTxoC2WjlN5MZk8bf4WPwc2sHobgR6MZ9uoMSkJ9LsiKjqkhTg7RyoO5/BH6QCFpx5IBvXAMr9tzOvwS+pONywivWeXrZIufwhHCN3zflxZ3kFORMUAe6OlBnKjOWhKK6ic0QP3pEQnINfQL9RYHMfy+cbrbbyvA/jeeadpqfxDRpQORYwsHluwDnrqXjVtotKlDP1jhii+ME+81NR/UXHv3lf2UoW0MvVOZ1GA5fdjZmWA/ChzIEmJyvUDR6BKQsJFgJN5hMhq6zvpqDG5sMvXKufrpnEgvAFJAasUujbM9Er0MuGi1TVrTQaEuGeiDYJw/frhvDateNQzN4b25ShsXpCAPQEJEiIs9EmnnOYr7s087xljeiLb+7wtaYzF1KtYZ8h9a0jWQsLHOqI+cVgDmr0XxEHORL1Ojos1NaRvq+z3pHv/2ZEesmsS3++CyJfdoFNG8w8U4/ezsktc+bAFzeXMv4gP6bSNzMpMo6eY/djYl7qTcqomHq7gZmpHFNVvDBYGDtlRBNlkEIuumwrvAjpzgfC5Z1qF3osfnoerj1pwIg3QSaLHPXYD/O8Tiwu8HbQQuloKbFbJx8VZI2+Y=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1721297976; cv=none; b=CbiIEWLb7oi3RI+DNc85l5o8lvjneW5p80wCQ9xo7qSkPTQGBpXHG17LaOXnrjUwMM1i6s4G8LJkkjto9pD8AGxssFZA6QHrHsu1Ccmvcv9LHTbZoIP6HG1/vQvnTQPSK3QEzr62ER/tom/JeOgNTGr0vpgeqyivwxyrC2BrtkmrKA/ngnLxn3G89AB8xsBST6Bz5rJw4hrQa/EHPJnGjFg6UTjRX7rZMeCAyRBMMYIs/9VpZQU907APogqMU3n/rHQFA7NOjPX8Ztd/yL7M20BZDCoJTBLsMgRIspWkt2wyEb+UTmNtD/MMskFDtDrDONNwoeUrg81Bj6VWwCMoyCL07HYOuiKkQE8DA+6MnP19lzGjH2LdLVOnY5Uoga7UanO8c8+bRe1LYWZl062KT/4/8QWTnKy+upWVDC8wCd86mUugavzzFTYZr0Q3E/YYSA8p/EC9DLWSw8Zlixirer4gV1v/cpqexA+kh74A5rYNsrP0tocquefgbF1tpKnBf9p2lEqVIJ8MJH3y7z7oiDSFjtW1YckmfgCa3tCBwsc6otmq7Fm6cCUkndvDHo/xgzRQGouNvCnS50DSrOCD6vT2SRWj4g6bh4ymDVl/FVIbVW4IccttJm+J4mIYUmVszH0/2pT9cDdWDeNVjEdvBJ2gE7GyZujL8UzeuB8ZovY=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Thu, 18 Jul 2024 12:19:39 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1721297976; bh=so5kR0WhyVBb11RvcodkKHIPlOyrD0Lgu3RqKHoJnGo=; h=Date:From:To:Subject:References:In-Reply-To:From; b=tVwH8pZSraJeL5J1opvUtjhY15Mm6miGDvS5CVp7QrBjWkHPjVdvhc0B+PBOYYfhj Yz0ayrw0FG4G1583zYzVQNQQYgB7GlW9/BDMGcEZxWGuwP/txGPpZ0X+E+wS1jsPvo xp2n/I9OECdQdbvjy62lOjLMvc9bTaXfn7iUnwH7sha6pfEy1l4x4YA8WvbUQctnn3 W/Z8zXH3905z3IifjtdEOEhRHJLIU5ArdWAbfFAQQrGltWYfA23W99cne+NLgbv+Qn O2f+GqdPLpOVdP2ZOVE+ybCae0Qk42TeY1FqxaAxrsn+9epexTYqoE0OFwiixoBnOa uMKXa4WyS7RKY+ikCPhww79bX/q1csKEnAF+RijN42vE6WvSzSAQe/fsWZh9Z+iP8/ owino8OwmECSUCTZEiAounYNBvGpj5xGldtyzNHk2Ij4bXZ7mrC+awOcvrHslf40Ew 3I3nhios/L3ECV+vK8Jkz8maRrCAnslT+CZdT1KzcyXpr1rJ7sMqazHCAOF+Pn5b1p QATiEJaSZoIK9mlQFiGjXREAf5H77pRadLyDvfI63/Zn3qZAzQVLBgj+cZ/n8XTjgy 0+LbiConLNxQtxj1bjBWsczCpThvpUe5Ti8Yghv3yX3U2FYfgEOWM36h6etEXwRs+j wzE9VD2aytc1Sx6KqjPzxvkQ=
- In-reply-to: <CAGUWgD_A=11ifrXxstF+npt7+NS5+47DO4N7xkbqsp3e2pSnMQ@mail.gmail.com>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <CAGUWgD_A=11ifrXxstF+npt7+NS5+47DO4N7xkbqsp3e2pSnMQ@mail.gmail.com>
On Thu, Jul 18, 2024 at 12:21:07PM +0300, Georgi Guninski wrote:
> I asked this on matherovflow at
> https://mathoverflow.net/questions/475285/on-an-integer-factoring-algorithm-based-on-smooth-class-number-of-quadratic-fiel
>
> We got an algorithm and toy implementation of integer factoring algorithm
> based on smooth class number of quadratic fields.
>
> It is close to the elliptic curve factorization method (ECM) and
> succeeds if it can find find $B_1$ smooth integers (all primes
> factors are less than $B_1$).
>
> Sketch of the algorithm:
>
> For integers $a,b,c$, let $q$ be the binary quadratic form $Qfb(a,b,c)$
> and define $D(q)=b^2-4ac$ (as defined in the pari/gp).
>
> If $D(q)<0$, then $\{ q^k \}$ is abelian group of order
> divisor of $h$ where $h$ is the class number of $\mathbb{Q}{\sqrt{D(q)}}$
> (not counting square factors).
>
> Elements of order $2$ in the group are related to factoring
> $D(q)$.
>
> If $h$ is $B_1$ smooth, write $h=2^k B_2$ with odd $B_2$.
> Compute $q_2:=q^{B_2}$ with enumerating the primes one by one.
>
> Then compute $q_2^{2^i}$ hoping to find factorization of $D(q)$.
>
> In case of failure, try a small multiple $m D(q)$.
>
> The algorithm sometimes works for $D(q)>0$.
>
> As a corollary, this algorithm might compute multiple of $h$.
>
> >Q1 Is this algorithm known, references?
See Henri Cohen GTM 138, pp 473,
The class group method of Schorr-Lenstra
""
The idea of the method is as follows. We have seen in Section 8.6 that the
determination of the 2-Sylow subgroup of the class group of the quadratic field
Q( v' - N) is equivalent to knowing all the factorizations of N. In a manner
analogous to the continued fraction method, we consider the class numbers
h( -kN) of Q( v' -kN) for several values of k. Then, if h( -kN) is smooth, we
will be able to apply the p - 1 method, replacing the group IF; by the class
group of Q( v' -kN). As for the p - 1 method, this will enable uS to compute
the (unknown) order of a group, the only difference being that from the order
of IF; we split N by computing a GCD with N, while in our case we will split
N by using ambiguous forms.
""
Cheers,
Bill.