Bill Allombert on Sat, 27 Sep 2025 17:19:14 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: [OT] On factoring integers of the form n=(x^D+1)(y^D+1) and n=(x^D+a_(D-2)x^(D-2)+...a_{D-2}(x^{D-2}))(y^D+b_{D-2}(y^{D-2}+...b_0)) with x,y of the same size
|
- To: pari-dev@pari.math.u-bordeaux.fr
- Subject: Re: [OT] On factoring integers of the form n=(x^D+1)(y^D+1) and n=(x^D+a_(D-2)x^(D-2)+...a_{D-2}(x^{D-2}))(y^D+b_{D-2}(y^{D-2}+...b_0)) with x,y of the same size
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 27 Sep 2025 17:19:10 +0200
- Delivery-date: Sat, 27 Sep 2025 17:19:14 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1758986352; bh=uLA26Upk6rNnHDPd1WuSUK8FaYzPPUgh89+8pW2wbGo=; h=Date:From:To:Subject:References:In-Reply-To:From; b=NRHpYPUVrMBsYQYZgSvQIBBo9Usx69jCag/7tHHrLOaKn8YIvwM/T5jdbWE9LuK5c TfXBV0gIKmFme16Y3fYTOghmcH9mzFR4YvC2s8o22o55XKJsxComFvIB2WTNfm7u28 6ua2f9xUMH22o0dq7MDTUR3GCNdeFG9Nhx4/8lminJOPF9ffTif5Xh5ZiTeH1c8KX1 p9XzuU0sP2nzXBmCaSLXnd1Pq63Cws2NNVASlGesojytO6yA6yK4XjfVfBvRhDy2k5 Y6EJqUrmsNFS4qQo5BHRIfqSOZvJ5t3qFqstg8N6tw5Sk9FR5LywvZfashHCepupfu Xvgx5RiH1929kjBGJ0FOeIFYhX9fYpyM6rQLGuOx9VNGkaNMuauLk1CUzZgBXQ3wuH 0MEObFldx6Y49tEgzY4ZA+QzJPlJZrsl6TcxAmkUqVuVz4J2Y/GGbmVCE+os3a9ZCV w4/R7meWgaN4lGUokmZZZWxJIr/3jLd2bP6TYTGyItkejyp36PgsI55HkQd2o/ni92 awIWeOeDUED5rAiBT2f/Fd1b0i9sHk9R3Vei+CL6vXjqHB+v5QgaKKq8IlTNqH6XoV E5n/kdiWTAl1e3r2YbZIJgDhA3pR6jHuyWYV4Eb9CWjCzaIiEF+GtFsksgU7Y+B9Mp ILBIO6dR8kUGWnn1FIMJw8U0=
- In-reply-to: <CAGUWgD9wSzZpdZvDw6jiqPc6aNUfv=iX7=YzCyH=OUgNBqNDxA@mail.gmail.com>
- Mail-followup-to: pari-dev@pari.math.u-bordeaux.fr
- References: <CAGUWgD9wSzZpdZvDw6jiqPc6aNUfv=iX7=YzCyH=OUgNBqNDxA@mail.gmail.com>
On Sat, Sep 27, 2025 at 04:07:36PM +0300, Georgi Guninski wrote:
> Apologies for OT.
>
> >From our preprint [1].
>
> > We got plausible algorithm and strong numerical evidence
> that integers of the form $n=(x^D+a_{D-2}x^{D-2}+\cdots a_0)
> (y^D+b_{D-2}y^{D-2}+\cdots b_0)$ with $x,y$ of the same size
> and $C=\max\{a_i,b_i\}$ and $a_i \ge 0,b_i \ge 0$ can be factored in
> $O(\mathrm{polynomial}(C \log(n)))$. A special case for $D>1$ is
> $n=(x^D+1)(y^D+1)$ We tested thousands of testcases without failure.
Well, this does not work for f=x^D, g=y^D.
But let me guess, you are computing r~n^(1/D) and solve
the system:
x*y = r
f(x)*g(y) = n
n=(x*y)^D + a_{D-2}*x^{D-2}*y^D + b_{D-2}*x^D*y^(D-2) + ...
n=(x*y)^D * ( 1 + a_{D-2}/x^2 + b_{D-2}/y^2 + ...
so
n^(1/D) = (x*y) * (1+(a_{D-2}/x^2 + b_{D-2}/y^2)/D +...)
n^(1/D) - (x*y) = a_{D-2}*y/x/D + b_{D-2}*x/y/D +...
so as long as x/y~1 and C small this should work but I do not expect your
algorithm to work if x ~ sqrt(y), for example
x= nextprime(2^128); y= nextprime(2^256);
Cheers,
Bill.