| Ramón Casero Cañas on Sat, 11 Jan 2003 02:39:08 +0100 (MET) |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| the problem of inversing a big boolean matrix |
Karim BELABAS wrote:
>
>Use ginv().
>
>Cheers,
>
> Karim.
>
>P.S: In recent development versions (2.2.4 onward, or so), you can also use
>
> GEN u_FpM_inv(GEN x, ulong p)
>
Thank you, Karim. Ok, I began to code using your advice. But then it occured
to me that maybe it would fail anyway. This is what I mean:
Let A be an invertible matrix A = ((ai)), where ai is in {0, 1}. I would
like to invert this matrix. Let say I'm using octave (or matlab). I would do
this:
* input the binary data to the matrix A
* B = inv(A) -> this gives typically floats < 1.0
* C = B * det(A) -> the det(A) is typically a very big number
* D = round(C)
* E = rem(abs(D), 2) -> the modulo 2 wanted solution
This works well with small matrices, but as soon as you go to a relatively
big matrix (only 64 x 64!), you lose precission in the internal data
representation. This means that units are truncated, so then, when you get E, elements
have random values. You can test this with A * E, it doesn't give the
identity matrix.
This is how I came to PARI. As I saw that PARI has a type that implement
moduloN numbers, I thought that maybe the inversion function worked not like in
the above example. So what I just tried was this: At the very bottom of this
message there's a 32 x 32 matrix, with a format that makes it easy to cut and
paste into GP's command line.
* Now we have an A matrix
* We create a 64x64 matrix with A64 = [mattranspose(A), A; A,A]
(if you make A64 = [A, A; A, A] you get a non-invertible matrix)
* We go for the modulo 2 type A2 = Mod(A64, 2)
* We invert the matrix E = A2 ^ (-1)
But again, if we test A2 * E, we don't get the identity matrix.
I would appreciate any comment on what I'm doing wrong, or maybe this is
just a problem without solution, or a problem with such an easy solution that
everybody knows it.
Cheers,
Ramón.
-------------------
{
A =
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 1, 0, 0, 1;
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
0, 0, 0, 0, 1, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
0, 0, 0, 1, 1, 0, 0;
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, 1;
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
1, 1, 0, 0, 0, 0, 1;
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0;
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 1;
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
1, 0, 1, 0, 0, 0, 0;
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0;
0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0;
0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1;
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0;
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 1;
0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
1, 1, 0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0;
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
1, 0, 0, 1, 0, 0, 0;
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0;
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 1;
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
1, 0, 0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 1, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1;
0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0;
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0]
}
--
+++ GMX - Mail, Messaging & more http://www.gmx.net +++
NEU: Mit GMX ins Internet. Rund um die Uhr für 1 ct/ Min. surfen!