cino hilliard on Thu, 18 Jun 2009 12:53:29 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
FW: Elliptic curve x^3 - y^2 = p A12-140 |
Re-send From: hillcino368@hotmail.com To: pari-users@list.cr.yp.to Subject: RE: Elliptic curve x^3 - y^2 = p Date: Thu, 18 Jun 2009 05:28:53 -0500 Thanks for the help. dell pentium 2.53 ghz windows xp pro GP/PARI CALCULATOR Version 2.3.4 (released) i686 running cygwin (ix86/GMP-4.2.1 kernel) 32-bit version compiled: Jul 12 2008, gcc-3.4.4 (cygming special, gdc 0.12, using dmd 0.125) (readline v5.2 enabled, extended help available) Copyright (C) 2000-2006 The PARI Group Karim, (05:26:04) gp > ?diffcubes diffcubes(n,p)=local(x,y);setintersect(vector(n,x,x^3-p),vector(n,y,y^2)) getting this (05:20:04) gp > diffcubes(10000,431) *** setintersect: not a set in setintersect. also for ver 2.4.2 > From: Karim.Belabas@math.u-bordeaux1.fr > Date: Thu, 18 Jun 2009 11:27:12 +0200 > To: pari-users@list.cr.yp.to > Subject: Re: Elliptic curve x^3 - y^2 = p > > * cino hilliard [2009-06-18 10:59]: > > I want to find the number of solutions of the elliptic curve, x^3 - y^2 = p > > > > for various p = 7, 431, 503, etc > > > > > > > > I have been using brute force in a Pari script below testing for solutions. > > > > diffcubesq2(n,p) = > > { > > local(a,c=0,c2=0,j,k,y); > > for(j=1,n, > > for(k=1,n, > > y=j^3-k^2; > > if(y==p, > > c++; > > print(j","k","y); > > ); > > ); > > ); > > c; > > > > } > > > > > > diffcubesq2(10000,431) outputs > > > > 8,9,431 > > 11,30,431 > > 20,87,431 > > 30,163,431 > > 36,215,431 > > 138,1621,431 > > 150,1837,431 > > > > (03:14:10) gp > ## > > *** last result computed in 6mn, 57,969 ms. > > Here's a "simpler" and better approach (still naive) for your problem: > > diffcubes(n, p)= > setintersect(vector(n, x, x^3 - p), vector(n, y, y^2)); > > (11:15) gp > diffcubes(10000,431) > time = 10 ms. > %2 = [81, 900, 7569, 26569, 46225, 2627641, 3374569] > > I trust you can work out the individual solutions (x,y) from the above data :-) > > For each given p, you can certainly work out necessary congruence conditions > and restrict to arithmetic progressions for linear speedups. > > > My Pari code misses the last two solutions. It would have > > > > taken way too much time to get to y = 243836 anyway. > > (11:19) gp > diffcubes(243836, 431) > time = 130 ms. > %3 = [81, 900, 7569, 26569, 46225, 2627641, 3374569, 190108944, 59455994896] > > > I tried using the Magma applet to compute the elliptic curve. > > This gets all solutions in a fraction of the time. > [...] > > E := EllipticCurve([0, -7]); > > Q, reps := IntegralPoints(E); > > This is a much more sophisticated algorithm, involving computing the > full Mordell-Weil group, then transcendence methods (linear forms in > elliptic logarithms + de Weger's reduction). > > Cheers, > > K.B. > -- > Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 > Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 > 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ > F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] > ` |