Bill Allombert on Sat, 26 Dec 2009 15:48:43 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Montgomery Square Root question |
On Sat, Dec 26, 2009 at 03:25:08PM +0100, Bill Allombert wrote: > Let P=a^3+60*a+64 and z your number expressed in term of a, not x: > P=a^3+60*a+64 > z=2814657884122787163746793632808511761633499567234431374441483926978867652153721301870381570719744*a^2-40942132939331751018273240650591985707497862567514861324721751201493425821910113619606396083372032*a-45975747055689337511796545375440934437650258546148057739453165564673458691658141449930516266483712 > > then do > nfroots(P,x^2-z) Actually with PARI 2.3 you should do (this should be faster anyway): K=nfinit(P); nfroots(K,x^2-z) %4 = [Mod(-189133117686159822165485681043654738588680060928*a^2 - 2055476375095129701009302875309311162506447683584*a - 1945600371033366152866700970896778949964215615488, a^3 + 60*a + 64), Mod(189133117686159822165485681043654738588680060928*a^2 + 2055476375095129701009302875309311162506447683584*a + 1945600371033366152866700970896778949964215615488, a^3 + 60*a + 64)] Cheers, Bill.