Max Alekseyev on Wed, 12 Jan 2011 05:50:26 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Roots of unity modulo a prime power
|
- To: Kevin Acres <research@research-systems.com>
- Subject: Re: Roots of unity modulo a prime power
- From: Max Alekseyev <maxale@gmail.com>
- Date: Tue, 11 Jan 2011 23:48:32 -0500
- Cc: pari-users@list.cr.yp.to
- Delivery-date: Wed, 12 Jan 2011 05:50:26 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:mime-version:in-reply-to:references:date :message-id:subject:from:to:cc:content-type :content-transfer-encoding; bh=fv6/rVneKkkAfMxMHYFfLkuInk9Av626HYw+Ho/gkNM=; b=xVBUvCIQXLJ+Jk0CZS+Fhv6xk2ecHUf2oIlrek3t82nY7m6SDMRh5IfwRnPsGkqqci 5Ai4gO5zCOodd5HhIv/NvSDffWoSHB5oRWLH3zovbhEpnWDybAhl/h8MNpIpEAxGcjc7 fZ3Dsqf7FYSl0kimQ6BWJs7tO7XZMQESSNkJs=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type:content-transfer-encoding; b=pWdANGBNwQAaZQKSpn46oLNbxweRz64FGpHv2fWYy5XGntZbGTkWm06wFVlEDkJUFD sy0NwnsiemWH6B+6zoM8OAsgQMKBKmEGtpZV2K1om99nLa8ArLhP1/1O4q0E6YnshHmP LBKF0aC27qgGI36cG+Tek730TmMCqI80tu1eE=
- In-reply-to: <4d2d2c19.2ad6e70a.1732.6abbSMTPIN_ADDED@mx.google.com>
- Mailing-list: contact pari-users-help@list.cr.yp.to; run by ezmlm
- References: <4d2d2c19.2ad6e70a.1732.6abbSMTPIN_ADDED@mx.google.com>
On Tue, Jan 11, 2011 at 11:18 PM, Kevin Acres
<research@research-systems.com> wrote:
> For example for prime p I am trying to derive the solutions for x for:
>
> Â Â Â Âx^(p-1) % p^2 = 1
>
> I'd be grateful for any help on this.
{ myroots(p) = local(g); g=znprimroot(p^2)^p; vector(p-1,i,lift(g^i)) }
should do the trick.
Regards,
Max