angshuman karmakar on Wed, 09 Nov 2011 19:24:51 +0100
[
Date Prev
] [
Date Next
] [
Thread Prev
] [
Thread Next
] [
Date Index
] [
Thread Index
]
Re: pour s'abonner
To
: moubinool omarjee <
ommou@yahoo.com
>
Subject
: Re: pour s'abonner
From
: angshuman karmakar <
angshu10ster@gmail.com
>
Date
: Wed, 9 Nov 2011 23:54:43 +0530
Cc
: "
pari-users@pari.math.u-bordeaux1.fr
" <
pari-users@pari.math.u-bordeaux1.fr
>
Delivery-date
: Wed, 09 Nov 2011 19:24:51 +0100
Dkim-signature
: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :cc:content-type; bh=SKctOrSwnSg6pU8iQrps4IRrYiEMUoEG83/THmyYxOA=; b=Ys0EoToCK9RlZuKbFmDzose09zBcTPz/PAvKxfLHoV1FitQSI9qKfiEy9l6N18Ma/n 5jo7Wh70w5u5RWyj9yDvf9d36M/Mo8suhrHKnxCI2lYgZynwtqNyEGQmZlp7k6tZmJc8 E/230wOTBKvIs9m1UBTcgNSkmQ/b5u0sTcsAI=
In-reply-to
: <
1320860101.32833.YahooMailNeo@web120525.mail.ne1.yahoo.com
>
References
: <
1320860101.32833.YahooMailNeo@web120525.mail.ne1.yahoo.com
>
I am asking about is there any way to solve Generalized Pell's Equation i.e equations of the form x^2-Dy^2=N where D is a square free positive integer, In PARI.
Follow-Ups
:
Re: pour s'abonner
From:
Bill Allombert <Bill.Allombert@math.u-bordeaux1.fr>
References
:
pour s'abonner
From:
moubinool omarjee <ommou@yahoo.com>
Prev by Date:
pour s'abonner
Next by Date:
Re: pour s'abonner
Previous by thread:
pour s'abonner
Next by thread:
Re: pour s'abonner
Index(es):
Date
Thread