zekhnini on Fri, 06 Jan 2012 23:19:00 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: ideal principal in relative extension |
zekhnini <zekha2 <at> gmail.com> writes: > > > Dear users, > I want to know if the thow ideals M and N are principal in the relative > extension K=k(sqrt(2+8*i)) of the field k=Q(sqrt(2*17*5),i ). what can I do? > > > T=polcompositum(y^2+1,y^2-2*17*5)[1]; > k=nfinit(T); > P=x^2-Mod(y^4-4*y^2+4*17,k.pol); > > K=rnfinit(k,P); > Keqn=rnfequation(k,P,1)[1]; > Kabs=nfinit(Keqn); > > H1=idealprimedec(k,17)[1]; > H2=idealprimedec(k,17)[2]; > > M=rnfidealup(K,H1); > N=rnfidealup(K,H2); > > MK= mathnf( Mat( nfalgtobasis(Kabs, M) ) ); > NK= mathnf( Mat( nfalgtobasis(Kabs, N) ) ); > > It responds nfalgtobasis: incorrect type in algtobasis. > > Thanks for help. > zekhnini > > Vous trouvez ci-dessus la rÃponse de Mr Kurt Foster : The following computations may be useful. Note in particular that defining polynomials are produced using rnfequation() and then reduced using polredabs () . The command z;y;t; was the very first in the session, and set the priority of the variable t to be lower than that of y, and the priority of y to be lower than that of z. The command rnfequation() does not require number field computations, but is fussy about variable priority. The variable x always has the highest priority. I used the command galoisinit(T3) simply to check that the polynomial T3 is a defining polynomial for a normal extension of Q (the degree 16 is too high to use polgalois()). If it hadn't been, galoisinit() would have complained. The polynomial P defines a non-normal quartic extension k of Q. The polynomial T defines the field you asked about, which is the join of k with a quadratic field. I called it F. The polynomial T2 is a defining polynomial for the normal closure L of k over Q. Note that the prime ideals lying over 17 in L are all principal, even though L has class group C2 x C2. The polynomial T3 is a defining polynomial for the normal closure L3 of F over Q. The prime ideals lying over 17 in L3 are all principal, though L3 has class group C12 x C2. The two non-principal ideals lying over 17 in F remain prime and become principal in L3. The principal ideal in F3 lying over 17 splits into two principal ideals in L3. ? z;y;t; ? p1=t^2+1;p2=y^2-2-8*t;p3=z^2-2*5*17; ? P=polredabs(rnfequation(p1,p2)) %3 = y^4 - 8*y^2 + 17 ? T=polredabs(rnfequation(P,p3)) %4 = z^8 - 4*z^7 - 14*z^6 + 56*z^5 + 163*z^4 - 424*z^3 + 1042*z^2 - 820*z + 746 ? F=bnfinit(T); ? F.clgp %6 = [24, [12, 2], [[26, 21, 1, 5, 16, 19, 16, 19; 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 2, 1, 1, 1; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1], [10, 4, 4, 5, 1, 4, 5, 3; 0, 2, 0, 1, 1, 1, 1, 1; 0, 0, 2, 1, 0, 0, 0, 1; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1]]] ? vf=idealprimedec(F,17) %7 = [[17, [-4, 0, 0, 1, 0, 1, 0, 0]~, 2, 1, [-2, 8, -5, 3, -1, 4, -6, 7]~], [17, [3, 0, 0, 1, 0, 1, 0, 0]~, 2, 1, [-2, 8, 5, -3, -1, 4, 6, -7]~], [17, [7, -6, 0, 1, 0, 0, -2, 0]~, 2, 2, [0, 0, -1, -4, 0, 0, 8, -2]~]] ^--- ? for(i=1,#vf,print(bnfisprincipal(F,vf[i]))) [[6, 1]~, [1198557/96536180, 883157/193072360, -23461/96536180, -2958581/193072360, 1602329/193072360, -446233/193072360, 406537/193072360, 1140261/193072360]~] [[0, 1]~, [1/10, -17/10, 7/10, 1/10, -2/5, 3/10, -1/5, -1/10]~] [[0, 0]~, [0, 0, 1, 0, 0, 0, 0, 0]~] ? k=bnfinit(P); ? k.clgp %9 = [2, [2], [[5, 3, 4, 3; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]] ? vk=idealprimedec(k,17) %10 = [[17, [-5, 0, 1, 0]~, 1, 1, [3, 5, 4, 1]~], [17, [0, 0, 1, 0]~, 2, 1, [0, 0, -4, 1]~], [17, [5, 0, 1, 0]~, 1, 1, [-3, -5, 4, 1]~]] ? for(i=1,#vk,print(bnfisprincipal(k,vk[i]))) [[0]~, [-1, 1, 0, -1]~] [[0]~, [0, 0, 0, -1]~] [[0]~, [1, -1, 0, -1]~] ? T2=polredabs(rnfequation(P,x^2-17)) %11 = x^8 + 9*x^4 + 16 ? L=bnfinit(T2); ? L.clgp %13 = [4, [2, 2], [[13, 8, 8, 11, 3, 12, 7, 9; 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1], [13, 8, 10, 1, 5, 2, 5, 12; 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1]]] ? vl=idealprimedec(L,17) %14 = [[17, [-7, 0, 1, 0, 0, 0, 0, 0]~, 2, 1, [7, 6, 1, -4, -1, 4, 3, 5]~], [17, [-6, 0, 1, 0, 0, 0, 0, 0]~, 2, 1, [-6, -7, -1, 4, -1, 4, -5, -3]~], [17, [6, 0, 1, 0, 0, 0, 0, 0]~, 2, 1, [6, 7, -1, 4, -1, 4, 5, 3]~], [17, [7, 0, 1, 0, 0, 0, 0, 0]~, 2, 1, [-7, -6, 1, -4, -1, 4, -3, -5]~]] ? for(i=1,#vl,print(bnfisprincipal(L,vl[i]))) [[1, 1]~, [-4/13, -6/13, -3/13, 5/13, 1/13, -2/13, 2/13, 3/13]~] [[1, 1]~, [7/13, 4/13, 5/13, -2/13, -3/13, -1/13, -2/13, -3/13]~] [[1, 1]~, [6/13, -4/13, -3/13, 0, 0, -2/13, 3/13, -2/13]~] [[1, 1]~, [2/13, 3/13, 1/13, -2/13, -3/13, 5/13, 2/13, 3/13]~] ? T3=polredabs(rnfequation(T,x^2+x-4)) %15 = x^16 - 4*x^14 + 78*x^12 + 384*x^10 + 433*x^8 - 5052*x^6 + 10212*x^4 - 9472*x^2 + 4096 ? gf=galoisinit(T3); ? L3=bnfinit(T3); ? L3.clgp %18 = [24, [12, 2], [[26, 5, 5, 14, 24, 21, 22, 15, 10, 19, 23, 5, 9, 23, 1, 15; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [13, 5, 0, 3, 12, 10, 10, 2, 5, 1, 4, 8, 8, 1, 11, 5; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 13, 12, 8, 8, 0, 12, 11, 10, 2, 10, 2, 11, 8, 1; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]] ? vl3=idealprimedec(L3,17) %19 = [[17, [-5, 4, -8, 8, -8, 0, 0, 0, 0, 1, -2, 0, -2, -1, 0, 0]~, 2, 2, [0, 1, -6, 8, -2, -2, -5, -3, 4, 2, -1, 0, -4, -1, -3, 5]~], [17, [-5, 4, 8, -8, 8, 0, 0, 0, 0, 1, -2, 0, -2, -1, 0, 0]~, 2, 2, [0, 1, 6, -8, 2, 2, 5, 3, 4, 2, -1, 0, -4, -1, 3, -5]~], [17, [8, 4, -5, 5, -5, 0, 0, 0, 0, 1, -2, 0, -2, -1, 0, 0]~, 2, 2, [-8, -2, 5, -4, -1, 7, -1, 6, -1, -5, 4, -3, -4, -1, 5, -3]~], [17, [8, 4, 5, -5, 5, 0, 0, 0, 0, 1, -2, 0, -2, -1, 0, 0]~, 2, 2, [-8, -2, -5, 4, 1, -7, 1, -6, -1, -5, 4, -3, -4, -1, -5, 3]~]] ? for(i=1,#vl3,print(bnfisprincipal(L3,vl3[i]))) [[0, 0]~, [-4, -5, 4, -5, -1, -3, 3, 0, 1, 0, 2, 0, -2, 3, 1, -1]~] [[0, 0]~, [-1, 0, 2, -2, -4, 0, 2, -1, 1, 0, 0, 0, -2, 1, 1, -1]~] [[0, 0]~, [-4, 0, 5, -1, 3, 0, -4, -4, 0, -1, -1, 3, 0, -1, 1, -1]~] [[0, 0]~, [7, -8, -4, 7, -2, -3, 14, 5, -2, 0, 3, -2, -5, -6, -5, -1]~] Thanks for Kurt Foster