Richard Heylen on Sun, 17 Nov 2013 22:54:04 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Shorter way to convert polynomial in x^3 to x? |
Thanks Bill and Karim, I'm glad to be taught new stuff about gp/pari. Richard On 16 November 2013 23:28, Bill Allombert <Bill.Allombert@math.u-bordeaux1.fr> wrote: > On Sat, Nov 16, 2013 at 10:50:32PM +0100, Karim Belabas wrote: >> * Richard Heylen [2013-11-16 22:43]: >> > ? f=factor(elldivpol(ellinit([0,1]),13))[1,1] >> > %32 = 13*x^12 + 52*x^9 + 1536*x^6 + 1024*x^3 + 256 >> > ? Pol(vector(poldegree(f)/3+1,i,polcoeff(f,poldegree(f)-3*i+3))) >> > %33 = 13*x^4 + 52*x^3 + 1536*x^2 + 1024*x + 256 >> > >> > >> > I tried using subst(f,x,y^(1/3)) but to no avail. Is there a short way >> > of doing this? >> >> (22:50) gp > substpol(f,x^3,x) >> %2 = 13*x^4 + 52*x^3 + 1536*x^2 + 1024*x + 256 > > Eventually Richard idea can be made to work: > ? lift(subst(f,x,Mod(x,x^3-y))) > %9 = 13*y^4+52*y^3+1536*y^2+1024*y+256 > > (i.e. y^(1/3) can be denoted by Mod(x,x^3-y) in GP) > > Cheers, > Bill. >