John Cremona on Tue, 17 Jun 2014 10:27:44 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
precision problem in nffactor |
In 2.7.1 I see this: ? nffactor(nfinit(y^2 - 22), Mod(1, y^2 - 22)*x^2 + Mod(926246528884912528275985458927067632*y - 4344481316563541186659879867597013188, y^2 - 22)) *** at top-level: nffactor(nfinit(y^2- *** ^-------------------- *** nffactor: the PARI stack overflows ! current stack size: 8000000 (7.629 Mbytes) [hint] you can increase GP stack with allocatemem() but increasing the precision makes the problem go away: ? \p 100 realprecision = 115 significant digits (100 digits displayed) ? nffactor(nfinit(y^2 - 22), Mod(1, y^2 - 22)*x^2 + Mod(926246528884912528275985458927067632*y - 4344481316563541186659879867597013188, y^2 - 22)) %1 = [x + Mod(-314226370217524044*y + 1473852319020386314, y^2 - 22) 1] [ x + Mod(314226370217524044*y - 1473852319020386314, y^2 - 22) 1] so it does not seem like a memory issue at all. Surely with exact input and output the user should not have to think about internal working precision? [This arose while computing the torsion subgroup of an elliptic curve over Q(sqrt(22)), where one needs to take square roots of number field elements.] John