James Cloos on Wed, 15 Feb 2017 23:27:03 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Verifying Elliptic Curve Cryptography
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Verifying Elliptic Curve Cryptography
- From: James Cloos <cloos@jhcloos.com>
- Date: Wed, 15 Feb 2017 17:26:53 -0500
- Copyright: Copyright 2016 James Cloos
- Delivery-date: Wed, 15 Feb 2017 23:27:03 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=jhcloos.com; s=ore14; t=1487197618; bh=WgJsHG0teARudwqt5/knzP7Oc5OsMIhGH5wuS4U4k1E=; h=From:To:Subject:Date:From; b=pomzVn3fyo5StDWmaKIMn+gzEY+QsyrlWx8BLCgxcEjnXZntoiHDwqDzgGYi1MLfD OYHFi/jEmWxGjfqU9HXiiZCz+kCLAriat2gKa7ClzdJ0RCTmD0UQXBE7VjFySK657/ Rwq7bq011QxW4IX+Hx4izrZCNKl2JeO6QfGxlasY=
- Face: iVBORw0KGgoAAAANSUhEUgAAABAAAAAQAgMAAABinRfyAAAACVBMVEX///8ZGXBQKKnCrDQ3 AAAAJElEQVQImWNgQAAXzwQg4SKASgAlXIEEiwsSIYBEcLaAtMEAADJnB+kKcKioAAAAAElFTkSu QmCC
- Openpgp: 0x997A9F17ED7DAEA6; url=https://jhcloos.com/public_key/0x997A9F17ED7DAEA6.asc
- Openpgp-fingerprint: E9E9 F828 61A4 6EA9 0F2B 63E7 997A 9F17 ED7D AEA6
- User-agent: Gnus/5.13 (Gnus v5.13) Emacs/26.0.50 (gnu/linux)
I've read examples in sage, but pari/gp is more readily available
on my systems, so:
Does anyone have any sample code in gp for working with modern curves?
I'm interested in the math for things like ecdh or eddsa using
"safe" curves (cf: http://safecurves.cr.yp.to).
I take it that sage's EllipticCurve() uses pari's ellinit(), yes?
I haven't done much with pari's elliptic curve support.
In particular, how can one use a curve like e:521:
x^2+y^2 = 1-376014x^2y^2
modulo p = 2^521 - 1
given that ellinit doesn't take an x²y² coefficient?
-JimC
--
James Cloos <cloos@jhcloos.com> OpenPGP: 0x997A9F17ED7DAEA6