Peter Pein on Mon, 09 Jul 2018 14:17:27 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Truncation Precision in PARI
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Truncation Precision in PARI
- From: Peter Pein <peter.pein@dordos.de>
- Date: Mon, 9 Jul 2018 14:17:25 +0200
- Autocrypt: addr=peter.pein@dordos.de; prefer-encrypt=mutual; keydata= xsBNBFFpPyMBCAChB6K2O9DhvA4TzjYZlziXX5oUqsngTj3dtjYzuxjdSt/rHVfthQi66YOC ozKG7u8O4IGHh1GzYxDqB9ziCBjFARUEpsY6ug710RNbIEsIsXHqLir+3qWAsJUvURgl0Tp0 KNINIAf/sTP55UFVn3k684iWCWPYz/y0fO/c35k8GF3crvY3XfgTJWUKnM+GXbNWZFApZgvd vZMpNlbRMLwohZE9DqLBiZsp2jfooVf3b2IpEiZXrj0kt3iJy3IKBP6xsM8wMkqrr+MIdeQT mlE4pxhPbX4XWXtcxnixiPFN+bYIgKVeR3nvFlewMwWEdRY9twHEidYhu0Dx7u0zr0glABEB AAHNIVBldGVyIFBlaW4gPHBldGVyLnBlaW5AZG9yZG9zLmRlPsLAeAQTAQIAIgUCUWk/IwIb IwYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQr9Oj3Ar4dLotvgf/dYnKledlLKkKu8QM Eq6woruF9dD8of4gYCZdpo0yIqMqndc9/npWSUbtl+g6yVH3FKBOaqHywaBU2VgNGEyodFMw ibJmoBHEPQ+YH1OeMluwC8LN4EKuAc7JQdI8oYMjG2+w+noGg1eRdWKBdyr6RVZ3twUqWFBs iJxvDzwK3U3zBF+iYK9v5U6H1ogqH9QIjNI1tptgZszNaxpvBkIAZvQaOlTpzZUQDepvcrmW Ju1cnQhOwudeoyF0e3rC17+VPXP4shxh/5n/LduHaCRWLq+H0pi38lkeqMuNzfcBCxBDMU8e ZLDRLA3HSRPaeUxqjoH+Z2glrCsUixB6AIe50s7ATQRRaT8jAQgAsvqysxZ8JJHSH1CiKzP6 OxrYk91rrGttwVz0EWjziVsnroLmb8vIDBrll6WCODbtSurjeXHnZ4rIHT+tjVs0yqqeSKOv 2UQgqUvZMfDHBs+FVCXtmoGhLYaojKFVkKK57MOM+POEEINSMa/7LSMoF89F8UP8FhfObCwb uWAMbmjGs9e+dKk1EzGKad6ZEgGmcx1vzHvEU8tWvmf2TLiZBIhty7ZDQP3SHtbLCl7JHjRb hGaujlkYg3Ue+teVlqusTfjVaQrn+uDOr4TUV56AfUa2BkFw4ivQR0Plqu5+l8Wn/VwQEFQK 8tb+AKYPBpH6bl98sN2tEvwRVWp0z2xLZQARAQABwsBfBBgBAgAJBQJRaT8jAhsMAAoJEK/T o9wK+HS6xZYH/i+OAV/iSk/OT4pxgLdO31bYTyoYT+DdMYgSct/Mx99KupzFHABpE9qCzgxS vuCIwr6XES/x0pZarRyR0PMRT4acZ9/kwleJ+AhQBsfPwClVSih/9bd1DkD4CSI+sp7g9VdL iXfNdme6YMMeCo1sItAGVy0Cn4g3jACJmvpDXiAlsWuISYGhENLYfuCPhoXm53CGlCCl6wke GyGBYKxsmpWFPPswkHK3lkOvJDSxkda0WA4NKh8nBbPX9/varY3WSWvIy1R05hJ4VRahH4Gx qI3fhbYIZXFgw/jj+EBLqweCXfHw193xzmMC/qbJJgc4O9Cb3nWyOUDaNB3Ll3XrqMI=
- Delivery-date: Mon, 09 Jul 2018 14:17:27 +0200
- Openpgp: preference=signencrypt
- User-agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:52.0) Gecko/20100101 Thunderbird/52.9.0
that is not very accurate :(
I get:
precision(-1 - Euler + 3/2*log(2*Pi) + 6*zetahurwitz(-1, 1, der = 1), 100)
%1 =
0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101
or via series devel. of the summand w.r.t. k and changing the order of
summation:
sumalt(n=2,(-1)^n*(n-1)/(n+2)*zeta(n))
%2 =
0.1870730725097797894509591576777666319578148029622159376465535484192711630046534855901322306210633101
(which evaluates fast)
Peter