Karim Belabas on Sat, 21 Jul 2018 11:13:39 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: generating function solution to poly |
* Kevin Ryde [2018-07-21 10:42]: > I have a generating function (and more terms too) > > g = x^2 + x^3 + x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 29*x^8 + 67*x^9 + O(x^10); > > which satisfies a cubic > > (1+x)*g^3 - 2*g^2 + (1-x+2*x^2)*g - x^2 == 0 > > Is there an easy or good way to have gp solve that for series g? ? g = subst(g,x,y) %1 = y^2 + y^3 + y^4 + 3*y^5 + 6*y^6 + 12*y^7 + 29*y^8 + 67*y^9 + O(y^10) ? seralgdep(g,3,2) %2 = (y + 1)*x^3 - 2*x^2 + (2*y^2 - y + 1)*x - y^2 Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite de Bordeaux Fax: (+33) (0)5 40 00 21 23 351, cours de la Liberation http://www.math.u-bordeaux.fr/~kbelabas/ F-33405 Talence (France) http://pari.math.u-bordeaux.fr/ [PARI/GP] `