Dirk Laurie on Sun, 07 Apr 2019 19:34:35 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
- To: John Scott <jscott@posteo.net>
- Subject: Re: Padé approximants?
- From: Dirk Laurie <dirk.laurie@gmail.com>
- Date: Sun, 7 Apr 2019 19:34:20 +0200
- Cc: pari-users@pari.math.u-bordeaux.fr
- Delivery-date: Sun, 07 Apr 2019 19:34:35 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20161025; h=mime-version:references:in-reply-to:from:date:message-id:subject:to :cc:content-transfer-encoding; bh=5RsGXLdWL7AGu3rdY0oNfOAAx3b7ZZqXIYWgFNP++ws=; b=K5sQAwDND/r9N7eZ8lICJT0uySNfx3/HnmYn5BIXuus0awHLndIs8hD1HS1sHY/QpK sRTOEaQ7W7j8mj5E/r0TephAMt3obFpE46BtDDeIFUUUiY5HsZO2GKsMhROPvFuaUTuj eXc+AC2wnn64L8hAGNQ6lWCgnkstjXG5IGyGVxrH9NK3wCkcqeWmeE5F3SORdn/5c9Xh 2LG0wAyhrSh841AyQv/esndnYNuVGAmQASK0EIRcnyY/HzbKeqgC01/sBBnbPN2JVl0u IWIl4hX5Kq0nUjb8sGXpncEmN83inNa3jpV5gjXYsvLByl6Ivi6uhI8YGTJZPXerSbD+ 50vw==
- In-reply-to: <1708117.z3Bse17gOD@x200>
- References: <CABcj=tmUx5MadzryURxMTw3amN0FwSV5hw1bi=EMGoe-dfT2fw@mail.gmail.com> <1708117.z3Bse17gOD@x200>
Thanks. I see it is sorted under 4: NUMBER THEORETICAL functions
whereas I was looking for it in 10: POLYNOMIALS and power series.
-- Dirk
Op So. 7 Apr. 2019 om 15:32 het John Scott <jscott@posteo.net> geskryf:
>
> On Sunday, April 7, 2019 8:46:23 AM EDT Dirk Laurie wrote:
> > e.g. pade(1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + O(x^5)) → (x^2 + 6*x
> > + 12)/(x^2 - 6*x + 12)
>
> Pari can compute Padé approximants. The function is called bestapprPade(), and
> happens to work with the same syntax you described.
>
> ? bestapprPade(1+x+1/2*x^2 + 1/6*x^3 + 1/24*x^4 + O(x^5))
> %1 = (x^2 + 6*x + 12)/(x^2 - 6*x + 12)