Jacques Gélinas on Wed, 07 Aug 2019 02:21:59 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
MacLaurin expansion of even functions
|
- To: "pari-users@pari.math.u-bordeaux.fr" <pari-users@pari.math.u-bordeaux.fr>
- Subject: MacLaurin expansion of even functions
- From: Jacques Gélinas <jacquesg00@hotmail.com>
- Date: Wed, 7 Aug 2019 00:21:53 +0000
- Accept-language: fr-CA, en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1;spf=none;dmarc=none;dkim=none;arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=ilz1hiEa6FrmCX/3BOhnAwgd1FM2+6YsxIrMH1UcMdI=; b=CwjrkdXn8EFg7oC72yRQBuUKcNggm7ZPDM35FkBKOs2Dp4VNe/s84dvfafJhpHc3XYRbdo7nVnt8l394JFV+3QPMNrXhZW1l/4g3vDK8j7Ew14sKBZGDxyuLglqfAJq+3t+9IfUBYYFHfAeCXXnlHyDrJ9FAO7Vq0BBfNgJJtFFZ1Ne59GSoAfHvOTEmhHJosSYRtbTzQFAbA1qmhjPcG7DcH+9QRZR693x9zo25K3FYoYU4NeDsV7uQba5xTl8QvnxyofrSXlIt+XFtLtECNVgPNF8rwz/vdxQsvMBpk8VnHRR4weG7+NpOFdMld6vwZsY06h54QHYBkvgzcJOM/w==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=dpeAqJYT96B74F1NDcUcMDMJz90fNXefLPTS1gVgVju6zTspalkl57CT7d55OOfiFIqkqU07EHZO7sjb6qIMzPzDA4QAUpsEqvRfBMKEd4d4so+E6MY9vhs72nqE2f1r9+EK7RjAtADSW6x6v6hsdQ3/VtTyck3Yq9Xq5At3Q80AYAc1B+uP+urr09ENpGQav964qEFwzx1IT2AVnyMSeS/l+BPdp4Eu/+q+5YaCsq4ZpllJOnKAHeJKXFjwjTOAT+RqByd5EgM1SlR/T7FCw6Yega6rFNw6i1eKPhHAMDNtjUsQqhnj6Zxqg3dnp+KDR/xR7BvdhDSBFisIXahnAg==
- Delivery-date: Wed, 07 Aug 2019 02:21:59 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=hotmail.com; s=selector1; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=ilz1hiEa6FrmCX/3BOhnAwgd1FM2+6YsxIrMH1UcMdI=; b=Dpbx4JInd1X8GIb2iWDV/M9VtEVHm4OZ1KksB1IRabxuyOUwqQUTVZcZMvXdJJfSoO89x9K3YoaR/Q/eTTWq9ghHZicJOFGCspz16orV5g15LS75tQPAYA0wv3ocTYoZEtwCCu12k88N3TkYDHPqWPoImpLRfMTgpaqdzrr/hwaQQMiTzEOoY+MfPjZq37/pFtw0hm715Auh1w5clmpy4EcRXXeAjAHLj7xlIG+UsyjSWo1bEKdUU4+KAfOx3IQz749vLquqAjFgFS9mEi0ClnoFBVoXI15fezsJ5SgOWEJZV6bnfvY/27MDE8lDg64wVVVwAwAEM2IswrxArq2aOA==
- Thread-index: AQHVTLIcbm425CdxDku/E7qgg4Y1mQ==
- Thread-topic: MacLaurin expansion of even functions
$ \p
realprecision = 57 significant digits (5 digits displayed)
$ \ps 4
seriesprecision = 4 significant terms
Consider the differences between the first two and last two expansions
$ Vec(besselj(-1/2,t)) \\ cos
[1, 0, -1/2, 0, 1/24]
$ Vec(besselj(1/2,t)) \\ sinc
[1, 0, -1/6, 0, 1/120]
$ xis(s) = gamma(1+s/2)/Pi^(s/2)*(s-1)*zeta(s);
$ Vec(xis(1/2+t))
[0.49712, 0.E-57, 0.011486, -1.2745 E-57]
$ Xi(t) = lfunlambda(1,1/2+t) * binomial(1/2+t,2);
$ Vec(Xi(t))
[0.49712, 0.E-77, 0.011486, 0.E-76]
Of course, I would want exact zeros for xis, Xi as for the Bessel functions,
and, if possible, the same number of coefficients for a given series precision.
How can this be done simply for any even function ?
Sereven(f,var) = ???
Jacques Gélinas