Karim Belabas on Fri, 08 Jul 2022 11:36:56 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Hilbert class polynomial roots mod q
|
- To: Andreas Enge <andreas.enge@inria.fr>, pari@jvdsn.com, pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Hilbert class polynomial roots mod q
- From: Karim Belabas <Karim.Belabas@math.u-bordeaux.fr>
- Date: Fri, 8 Jul 2022 11:36:51 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1657273013; c=relaxed/relaxed; bh=flbLIpuwHmOp+9PNgMfR6N8+tTQf9nK5MdTR9BT/xXw=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: Content-Transfer-Encoding:In-Reply-To; b=Sl14g4/8RDhjMnO5xkJcGMCgU7kFFRLjdGG0OZByJi0iMzPCRGT227bEeoZxqXXF6CQqrXbIHQpieo0pZ2s77brRwwCJZM2rgkiBVzGiNnz7pG6i61AihWW5lpK7rWHxxAJSlV0oUiPc96g9W/xojxSfxsAE3ZO9jsetxRLixOTmhaL2a477jytJUyekfvO8IUGtiFPXDRz6b6HJ6bv/0c+w/4NXBD6tWxtZPpt6owHX9/b+5AQJjSLKel+gyjsXNJt6aMGxCVs8TexYZ9iTdT16vSheRnFV1TpPDAjtUgMHIinHGSQeEjFO4PuQL3M3mfbbVZ0bncbhi5AFw+0DacF7Psh+8APb8ZroTjS9HlBAM35A67q+L4PVqnBGVVtuoiJw23dVSd4elkobWaRIuaS89DJU0zDdl1jkHiZXx9rDMsa4yUo3i6IMLZ5xh+/WSMcikQLLfs+O6uFMVg+9kexlifGGtXSda7/tO6oXRunCPLEv8Yy8b60cG7JmRQb1njwNDwOuPf9VOHw1G908j9kcZDR3wtlTM/j/wED+FMX0qBdkjPN/+03Er2b+vLClGCdiaiSvQmoaaNtU7cpu8YUDXxyD6+0owtRiMWD6/YF1vggB+fPaFuPHdCB4xvzXJPQB+yy7kkmcmTkArNUWW7S59Q8vzUgHbej9DeI1jtA=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1657273013; cv=none; b=s8sPMXUbyC8A+eCmolmsNaJKlmyqhtxx0wcoW/7xGERhp3VhIqeHlBuA0Ye4Sl4Is6orcfEx/URjQGmauf010+rTqAX9Z8qwwTgLAt7ToMZ4+z2AxpyUlDxLcODalwRLQaMesU4uLU94fBqHsuubgEoRs4c+JjFE8+zy98bvL7nUK0eHADBA0jCCcRYQZvlCf9X5bq45LKgHlNSmbjG8JaLH/iNcKAzb8foAsrAG6sBp3mPvyIxD9+eGUYmXvPbiY/hDP8mRs3O5AqgWm5k5/fMsqk2Xv73EF+2FMbTqstJvlAyH24WojQ8x55wK5cl/HNa1+OkU7HLLsfsxviAWchzkqYqZUWQ69yR7614AK3VKinCZcc8B9gWpU3GixUF63YT2has1hrflJaW2KdkRaH3/yXjA+0niWZlajLsSJu9XQxaP10xjvuXqsENfSIbCBmIeeTK2Zf6N7t60nzpvGLyUlwlMbyl/EDFc2Y/62WtWpn1E7t0L+/2zdAuq87poaIkqFglHr4nzwytfrcC/+hWY7fmR3gZuhg1lEYGm4MVWl6CXP2hhvhmO3QWx41gSeAP2Qk4OfqvnzF7pZhXb7Y/+izfLvPao0bp2SOO601itD7G7JwS0Fdc39r4S8b1vZKdz74voJkiK1a329J1eHiBsAt4nD9rXVq/RGxpCg9o=
- Authentication-results: smail; arc=none
- Delivery-date: Fri, 08 Jul 2022 11:36:56 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1657273012; bh=flbLIpuwHmOp+9PNgMfR6N8+tTQf9nK5MdTR9BT/xXw=; h=Date:From:To:Subject:References:In-Reply-To:From; b=YIEgWxQdljcWYzNT54ycDtvO1wf5zMD0fSyK3J0pypxmHA8tZEdJeaqGshmRA5Mno MuhSbbAhMHAIe5S5tEzDiZs9gVxrZ192UgGtgZU0yhQzpT7TTPo0ZbkdrWihX9cCLM 24s9Y3n14noXdaGLkV10YzREJvnv2fPbtyvw/i+L8cK2uFVd0rdzhqP9x5nc1ITm5T B19YbiP/5OrYOCydEr+ia3FflQfbAiWmvR4tHesjFjlMDwyT328fGJdoNsgekX6FoT g3IoI8Fd5iRdqW5STOScRG3q6mrleripNJUrUKlTI+rGLelT/D5aLrdvuwzrdZDAux UMgT6OqoxF8rTyjI8H2EkttrVfW2V/V6/W05RTAVmjAocBPjx+Ien2tSLYCKvZjsxy SkfS970YYgLB3z4vtJYQvdNoBN0RWQjW1tuy/3KyVqSDnMmLT1fleFjd5jYaHJw895 5qlj1kYdKO7HvUwB5en9A9a6QZYvkuRwKBOTF4vFr/XC31vyyWzcjXEq5RiYHvrdUb Umi7tb3I53jIMGiT6Py1mLHxMJjXnx1h+bYkp/Rex08CGhrTAsulbhHePGjZdJ+lUp gNI02Y61aLL36sGN/B5cZvucYgnzFJwqIuJ9paB9u/IpPyoAKP4DZnQDTNhNVpUEsG v1MXDFa6xvTffdE7VeLc2pjs=
- In-reply-to: <20220708092557.GA359036@math.u-bordeaux.fr>
- Mail-followup-to: Andreas Enge <andreas.enge@inria.fr>, pari@jvdsn.com, pari-users@pari.math.u-bordeaux.fr
- References: <f2ad96b9-b1ad-0555-20b7-6f8609250269@jvdsn.com> <YsNKRwc2VerX3huG@seventeen> <69f31097-e292-8a85-3cee-407d4b029fe0@jvdsn.com> <YsVHUHMBPPcQAZk1@jurong> <91cc5c19-051c-e827-a7b4-44967e96e8cd@jvdsn.com> <Ysc1JxJ5zfVZgzeW@jurong> <20220708092557.GA359036@math.u-bordeaux.fr>
* Karim Belabas [2022-07-08 11:26]:
[...]
> and in fact just computing x^p mod T is the bottleneck (deg T ~ 5, p ~ 2^32);
[...]
Just to be clear: the computation is x^p mod (T,p) and is done using a
sliding window algorithm, naive polynomial arithmetic over F_p, and
naive F_p arithmetic [ deg(T) is too small to make Barett reduction useful ]
It's the function Flxq_powu() in case anybody's interested.
Maybe hardcoding (and optimizing) multiplication of small degree
polynomials and Euclidean division would be enough to bridge the
performance gap.
Cheers,
K.B.
--
Karim Belabas, IMB (UMR 5251), Université de Bordeaux
Vice-président en charge du Numérique
T: (+33) 05 40 00 29 77; http://www.math.u-bordeaux.fr/~kbelabas/
`