| Bill Allombert on Wed, 16 Nov 2022 16:57:48 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: A306044(n) |
On Wed, Nov 16, 2022 at 04:21:10PM +0100, Ruud H.G. van Tol wrote:
>
> I added PARI-code to https://oeis.org/A306044
> "Powers of 2, 3 and 5."
> but I'm not happy with it.
>
> {
> a(n)=
> my(f= [2, 3, 5]); /* ordered co-primes (?) */
> for(i= 1, #f
> , my(p= (n-1)\f[i], d= -1, j= 0, m= 0);
> while( j < n
> , d++;
> m= f[i] ^ (p+d);
> j= 1; for(k=1, #f, j+= logint(m, f[k])); /* j= index */
> if( (j > n) && 0 == d, j=0; p--; d=-1) /* retry */
> );
> if(j==n, return(m)) /* found */
> )
> }
>
> The initial value of 'p' is a (simple) guess.
Seems to me you want to invert
b(n)=logint(n,2)+logint(n,3)+logint(n,5)+1;
an approximation is thus
h(n)=exp((n-1)/(1/log(2)+1/log(3)+1/log(5)))
This function is a good approximation of a(n):
g(n)=my(f=[2,3,5],e,a=round(exp((n+1)/(1/log(2)+1/log(3)+1/log(5))),&e));vecmax([p^logint(a,p)|p<-f]);
Cheers
Bill