Bill Allombert on Wed, 16 Nov 2022 16:57:48 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: A306044(n) |
On Wed, Nov 16, 2022 at 04:21:10PM +0100, Ruud H.G. van Tol wrote: > > I added PARI-code to https://oeis.org/A306044 > "Powers of 2, 3 and 5." > but I'm not happy with it. > > { > a(n)= > my(f= [2, 3, 5]); /* ordered co-primes (?) */ > for(i= 1, #f > , my(p= (n-1)\f[i], d= -1, j= 0, m= 0); > while( j < n > , d++; > m= f[i] ^ (p+d); > j= 1; for(k=1, #f, j+= logint(m, f[k])); /* j= index */ > if( (j > n) && 0 == d, j=0; p--; d=-1) /* retry */ > ); > if(j==n, return(m)) /* found */ > ) > } > > The initial value of 'p' is a (simple) guess. Seems to me you want to invert b(n)=logint(n,2)+logint(n,3)+logint(n,5)+1; an approximation is thus h(n)=exp((n-1)/(1/log(2)+1/log(3)+1/log(5))) This function is a good approximation of a(n): g(n)=my(f=[2,3,5],e,a=round(exp((n+1)/(1/log(2)+1/log(3)+1/log(5))),&e));vecmax([p^logint(a,p)|p<-f]); Cheers Bill