| Karim Belabas on Fri, 18 Nov 2022 02:41:48 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Obtaining the coefficient matrix of multivariable homogeneous linear equation system. |
* Hongyi Zhao [2022-11-18 02:21]:
> Hi here,
>
> I've a multivariable homogeneous linear equation system as shown below:
>
> $ gp
> ? trmat=[x1,x2;x3,x4];A=[a,b;c,d];
> ? A * trmat - trmat *A
> %50 =
> [ x3*b - x2*c x2*a + ((-x1 + x4)*b - x2*d)]
>
> [-x3*a + ((x1 - x4)*c + x3*d) -x3*b + x2*c]
>
> Where, trmat=[x1,x2;x3,x4] corresponds to the variables. My aim is to
> obtain the corresponding coefficient matrix as follows:
>
> [[0, -c, b, 0], [-b, a - d, 0, b], [c, 0, -a + d, -c], [0, c, -b, 0]]
>
> Is there any way to achieve this goal?
Here's a basic idea
SUBST(e) = vector(4, i, substvec(e, [x1,x2,x3,x4], vector(4,j,i==j)));
Then:
? m = A * trmat - trmat * A;
? [ SUBST(m[i,j]) | i<-[1,2]; j<-[1,2] ]
%2 = [[0, -c, b, 0], [-b, a - d, 0, b], [c, 0, -a + d, -c], [0, c, -b, 0]]
Cheers,
K.B.
--
Karim Belabas / U. Bordeaux, vice-président en charge du Numérique
Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77
http://www.math.u-bordeaux.fr/~kbelabas/
`