Bill Allombert on Sat, 07 Jan 2023 18:50:39 +0100
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Solve an non-homogeneous system of equations mod Z.
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Solve an non-homogeneous system of equations mod Z.
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Sat, 7 Jan 2023 18:49:01 +0100
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1673113743; c=relaxed/relaxed; bh=WDR7R7mvMGfRMY7NeMOmX0MH8Ox071kzl2XWablLvPI=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=zQEX74ie6vi2gLuanNtNatT22MM8M335sWTYFeb0ZDcDSyTML59kMq7i5NgGmNa7nEjVpkMsjomgX0nlskWy99zA/lt0hQ8CsDfH5MVwyovK2V8KGEfMhJs2QIH4C7z1tJS4ve8rjlOMjCe3Dg1RZrKs3Adx9wybec58O6U62u6Ljuz2Qc5eCYFDPPCuEHOqlY66Vk9IxT2Cx9a+u4zA4TxRkoeo/BzW2EoosvIiwfLgHWm8pklsfH46YaTJVU6qlQV61+p+Ujgkc5YuBHiKfxYroY0+Zm363spDeKipr3CCwoRDbxUmWjmXaS6Fn5D3UtAJ31Ih8c+IKwOZCDe8MDHqe/TRvX5hieELPzf41xhh1w1DqzUhlGFgbuuo5Ccy59i6wqwB82ch28VbseY+tMGNdSXQMjTUTRicmag9iQpeXaOQ6qfaCpamnppnAjwnJtbnhtcxmQuBP0FOP+38nHQak+A5KPk12SOEfv6nMBNr8Q9e+VhOHbqoNTLHffor5Qx8+JbmymRIzjgiq8DgjJFFfiD971K6WKvWxgSITe8H+ZS6xOxqAX8Zz9oBl2DKNGJIfxHsUD8AT6DO+3A7Nvnqq5XrILSKoOmPmYjEhLIk99V8O8dqVcx7v8kni65hT4DUuBamP+9/6PVInYc5gnUd0nJuW1ZIyoXvorU4cAg=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1673113743; cv=none; b=oM7xjIP0BxE9CBdWM7vXxtz5HiflbyDP3VpKO6HTe/C1z6HIy6Y5tjFC2lXtfzp580lT66OkVsGMuGRfO961A5ZzmyMLmmC7tS/sIdQvssBPUO5NZzsg0crB4dV3l2vrUdCEntS6oxjCl3zCYOqWbFYShOw5bKaBxubqh4/ucMut23iR08/5Qx1KIc+uuUnTBzQrcCykyrBU7uwpDRMt09LDf6Zk3AbCsGotG+o+CJx5KQ8JRU57YV0Yu1ucxBAICsxUabi8jZ2qYuQUhX4/EINfqH44q6VsLVhxwnBTluUE3RO/qOLhJTD+lwjM/3wj4Er9NAYRW5b7oEjHTUpdYlRfy7r3znPX1O6jPuzaeXmcEe/z3r63U8r/JP6FAzvlf0G0YN0XHd7aDA7aUum9FTyY7yJzCxR+Xb/JJGn+LvSPKT4bApJts9fXl54hT500bMOZhNFdqnjpZx51mQXVgqBxxX0LMt+cjYiL7zD//iYZcPHZdBCxxvVTHkEUHOgN5f2XgYPp4HGeAmA65F0XBI4UuIHq9Tn76YWjfUb2t32bQiZkS9HHtPZWriJNaccCv9Kuiq4EZ3+CoFps5CTMAoVzl6Ka29Q94iayNYLe9ppx+g1obRgeWW8TEJtU+yeFMlu1O/hZL6la7OjAPAOA3S1ons9HiwI2BJTcWriyfO8=
- Authentication-results: smail; arc=none
- Delivery-date: Sat, 07 Jan 2023 18:50:39 +0100
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1673113742; bh=WDR7R7mvMGfRMY7NeMOmX0MH8Ox071kzl2XWablLvPI=; h=Date:From:To:Subject:References:In-Reply-To:From; b=QVmET12pIUVfBKjxPvDlGnrohAW2CxGO/KFcRDuvPAoD2JZa5wy5UXL8RHf3ndKG/ VwWwTWiqApWvLL5M0xvxV13RnRvdC4mboMkrs57LTnOK90KOopM69jSxvWSqNF8gKD EhMtGy/upD/pZDxnCa5SH7289YVeigJ197lWxHSJ954L484lhfc5HUV3gjqo/GnfeX oLlPQLPulBapvUUMM752X6kjduN5yw72vD/IVHr/TCnbBOxN3MfL251pef+jmdW32V xcZ6DitX5TbvYV1p1pJWNZQ/e2Ah54K3Y0UbXT4YLHQRAjz7U/Y6aWdCQyIMuxNj5T 0XbOHs/DGxtBS+gra5gABeK49mYIAN9hRs9DclFP5R6oWIXk1Aq8tdflifRFqXEUFN qUi+ZFhRuleFsCzUsG7+QGpCGyFefJqaxv876kVMCLcGr3p52q8S5xLIPK1/e/Zkdy Z0jHOl65yuXtIv4RazglF15dgwek0MUDihxljH5NOWJod5ykDY8gi7UtdVv90sAwco dbAjw+wIgv06YY1FOhN9rxuHdtTJTj/H1zkgUu/ZPtkGrsg6HEcVNsZ2I+r0VL/b5n 1J2IwPhJWbCHJVB0naFAnvxcuwfXpCN/NbP/wI5bkwFsyoAKss/xDi3Tfn9weFhh0i NiYwM9/YxMIvaHvOnbZ3KP7s=
- In-reply-to: <CAGP6PO+_Y3DK9xDZN-EF2WGBfL8Zvf40qTSH3CubhHEKX1VMcQ@mail.gmail.com>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAGP6POLYCssCjSL3FVgKu3nqLKUg+QpXann0g1mpmj9WsH=NWw@mail.gmail.com> <Y7XtLFSpO8aMt48s@seventeen> <CAGP6POLNF7tz5U-Djrz78KhTAhupqReyd+PfHpuhUwkVkWjHrQ@mail.gmail.com> <CAGP6POLJAOGhK2qdsyBpW1+hrQOTw-DgFQNWA=_cNYw36chtPA@mail.gmail.com> <CAMLkfFQTLa_7jh-5qcOov=-KmmUo86R5RqJ9d-WRwOFug+3aww@mail.gmail.com> <CAGP6PO+64ozJ7-cbk2eR1XAtQdxGFYv=pGzFx1OKqRThP7i0zQ@mail.gmail.com> <82f611b1-0c50-2eaf-5894-d0d6994e511a@normalesup.org> <CAGP6PO+a8=MewcWM=qML=TMyy5NNkn=HCwQDqoLV_56JP1He9g@mail.gmail.com> <Y7k75+5GTuQ+bzhS@seventeen> <CAGP6PO+_Y3DK9xDZN-EF2WGBfL8Zvf40qTSH3CubhHEKX1VMcQ@mail.gmail.com>
On Sat, Jan 07, 2023 at 09:29:55PM +0800, Hongyi Zhao wrote:
> On Sat, Jan 7, 2023 at 5:31 PM Bill Allombert
> > One possible solution
> > Take w = [0,0,1/4]~
>
> This solution is not given in advance. We need to find such things
> first. How did you find such a solution?
You should start by replacing mat1 by matriqz(mat1,-2) as I suggested.
Then everything is be easier. For example
mat1 = [ -210, -210, -220; -221, -222, -232; 410, 411, 430 ];
vec1 = [ -27, -28, 105/2 ]~;
M1 = matrixqz(mat1,-2)
B1 = matinverseimage(mat1,M1)
x1 = B1*matsolvemod(M1,2,2*vec1)/2
\\%64 = [3/7, 1/42, 0]~
mat1*x1-vec1
\\%65 = [-68, -72, 133]~
So you get a solution.
Cheers,
Bill.