| wraithx on Sat, 11 Feb 2023 05:00:56 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Question on elliptic curves... |
Hello, I was wondering how to convert the following sage code to Pari/GP?I already have a conversion of the first function FindGroupOrderA, but in the function FindGroupOrderParam2, I'm not sure how to do the following two lines in Pari/GP:
P = s*E(-3,3)
x,y = P.xy()
Thanks for any help you can provide!
-David C.
# Example SAGE code:
def FindGroupOrderA(p,A):
K = GF(p)
d = K((A+2)/4)
a = K(4*d-2)
b = K(16*d+2)
E = EllipticCurve(K,[0,a/b,0,1/b^2,0])
return E.cardinality()
# for parameter sigma = 2:s
def FindGroupOrderParam2(p,s):
K = GF(p)
E = EllipticCurve(K,[0,36])
P = s*E(-3,3)
x,y = P.xy()
x3 = (3*x+y+6)/(2*(y-3))
A = -(3*x3^4+6*x3^2-1)/(4*x3^3)
return FindGroupOrderA(p, A)
#=================================
# Conversion to Pari/GP:
FindGroupOrderA(p,A)={
my(K, d, a, b, E);
K = Mod(1,p);
d = K*((A+2)/4);
a = K*(4*d-2);
b = K*(16*d+2);
E = ellinit([0,a/b,0,1/b^2,0],K);
return(ellcard(E));
}
# for parameter sigma = 2:s
FindGroupOrderParam2(p,s)={
my(K,E,P,x,y,x3,A);
K = Mod(1,p);
E = ellinit([0,36],K);
P = s*E(-3,3); //?????
x,y = P.xy(); //?????
x3 = (3*x+y+6)/(2*(y-3));
A = -(3*x3^4+6*x3^2-1)/(4*x3^3);
return(FindGroupOrderA(p, A));
}